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Abstract

We analyze how public disclosure of informed investors’ trades results in manipulation, which
in turn a ects coordination and competition among informed investors in a duopolistic setting.
Under disclosure requirement, an informed trader’s order ow consists of two components: an
information-based component to pro t and a random component to manipulate. The random
components from all informed traders collectively equals, in distribution, the random orders from
all liquidity traders. Market is more e cient with disclosure. When each informed investor have
very imprecise information, disclosure helps to coordinate trading among informed investors and
they make more expected pro ts compared to what they expect in a market without disclosure.
Moreover, an informed investor would prefer competition in the presence of disclosure as each
informed investor makes more expected pro ts than he would obtain in a monopolistic market.



At rst thought, one would have expected that public disclosure of informed investors’ trades should
reduce informed investors’ expected pro ts. Indeed, many regulatory proposals and legislations have
argued that disclosure would help level the playing eld, reduce information asymmetry and bene t
small investors. For example, corporate insiders are required to disclose their trades to the Securities
and Exchange Commission (SEC). Section 16(a) of the SEC Act requires the insiders to report their
trades to the Commission within ten days following the end of the month in which the trade occurs.
Recently, SEC have made proposals to report high frequency trading on a timely basis. On April 14,
2013, SEC issued a release proposing that certain large-volume, high frequency traders (classi ed as
\large traders') be required to self-identify to the SEC and that broker-dealers that e ect transactions
for \large trader" customers maintain and produce records of these customers’ trades to the SEC.

While disclosure should reduce informed investors informational advantage when they all have the
same information, it is less clear cut when investors have diverse information. In the latter case,
not only the market can learn from the public disclosure, the informed investors can also learn more
from the disclosure about each other’s signals. With diversely informed investors, trade disclosure can
act as a coordination device that allows informed investors to communicate with each other. How
would disclosure of informed investors’ trades a ect market e ciency and market liquidity in a setting
with heterogeneously informed investors? Under what conditions, would an informed investor prefer
competition if they can learn more from each other through disclosure?

We consider a Kyle model of two informed investors each of whom is required to disclose his trade
immediately after the trade is made. In discrete time, we derive a recursive formula for the equilibrium,
which can be solved by numerical methods. In continuous time, we derive a closed-form formula for the
equilibrium. To determine the impact of disclosure, we compare our closed-form equilibrium formula
with that obtained in Back, Cao, and Willard (2000), whose model is the same except no disclosure is
required there.

Disclosure of informed investors’ trades creates incentives for informed investors to manipulate in
that they sometimes trade against their own valuation to mislead the market, so that the market maker
cannot perfectly infer information from their trades. As a result, the informed investors randomize to
manipulate the market maker’s belief until the last moment of trading. The mixed strategy allows the
informed investors to maintain an informational advantage over the market for a longer period of time.
We show that the combined random components in informed investors’ trade equals in distribution to
that of the liquidity traders. This is intuitively appealing as informed traders and liquidity traders will
each contribute to half of the trading volume. Too much randomization will cause informed traders
to lose a lot from randomized trade and too little randomization will cause informed traders to lose
their informational advantage too early. To camou age themselves, informed investors contribute to
half of the trading volume in the market.

The e ects of trade disclosure on market e ciency is unambiguous. Market is more e cient at all
times after disclosure. As informed investors know more about each other’s signal, their valuations
converge more quickly and they trade more aggressively on their information, which in turn makes the
market more e cient.

The e ects on the expected pro ts of informed investors and market liquidity are more complicated.



Public disclosure has three e ects on informed investors’ expected pro ts. The rst is the randomiza-
tion e ect. As informed investors manipulate and add noise to their own trades, they lose money from
the noise trades. This will reduce informed investors’ expected pro ts. The second is the coordination
e ect. With trade disclosure, informed investors learn more about each other than the market maker
and they can coordinate their trades better which in turn increase their expected pro ts. The third is
the market e ciency e ect. Disclosure increases market e ciency and make informed investors trade
more aggressively. The reduction of asymmetric information between informed investors and market
makers will increase market liquidity and reduce the expected pro ts of informed investors.

When informed investors have very precise signals, they won’t be able to learn from each other as
much. In this case the coordination e ect will be less important and disclosure will always decrease
expected pro ts of informed investors. On the contrary, when investors have very noisy information,
they tend to wait until they know more from each other before they trade aggressively. Trade disclosure
can reduce the incentive to wait and make investors trade more aggressively. Informed investors learn
more from disclosure than the market maker. The coordination e ect could dominate other e ects and
result in higher expected pro ts of informed investors. Moreover, the coordination e ect could be so
strong such that an informed investor makes more pro ts in a duopolistic setting than what he would
receive in a monopolistic setting. Therefore in the presence of disclosure, an informed investor could
prefer to have competition. Indeed, an informed investor can even make more money in a duopolistic
setting with disclosure than what he would expect in a monopolistic market without disclosure.

Similarly, randomization will reduce the informational content in the aggregate order ow and thus
increase market liquidity. However, coordination among investors could reduce market liquidity. The
reduction of asymmetric information would increase market liquidity. As a result, market liquidity
can either increase or decrease depending on the parameters and the timing of the trades.

We extend the model to more than two informed investors and show that while competition reduces
informed investors pro ts, it is still possible for informed investor to make more pro ts in a multiple
players setting than what he would receive in a monopolistic setting.

The e ect of disclosure rules on informed traders’ trading has been studied by a number of authors
including Fishman and Hagerty (1995) and John and Narayanan (1997). But these articles exclu-
sively focus on the case of a single informed trader. Fishman and Hagerty (1995) study a two period
model when an informed trader only possesses inside information with a certain probability. While an
informed informed trader will never manipulate the market in their model, an uninformed informed
trader can manipulate the market since the market may mistakenly believe that the uninformed in-
formed trader is informed. John and Narayanan (1997) extend the Fishman-Hagerty model such that
an informed trader receives good or bad signal with di erent probabilities, and they show that if
such di erence in probabilities is large enough, even an informed informed trader may manipulate
the market. Here, the asymmetry in the likelihood of receiving di erent signals adds a new factor to
induce an informed trader to manipulate: If the prior probability of good news is high, an informed
trader with good news will sell initially and then reverse his trades in the next period.! While both
FH and JN have found that it is possible for disclosure to increase informed trader’s expected pro ts,

1John and Narayanan (1997) contains a brief an extension of their model to allow two informed traders. However,
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the intuition is very di erent from our model. In FH, the result is driven by the assumption that the
market does not know if the informed trader indeed has observed a signal or not while in JN the result
is driven by the assumption in the asymmetry of the likelihood of receiving di erent signals. In our
model, disclosure increases informed traders’ pro ts because it can reduce the incentive to wait when
informed investors have very noisy signals.?

The most related paper is by Huddart, Hughes, and Levine (2001) who study disclosure e ects
in a discrete-time Kyle model with a monopolistic informed trader. They show that the informed
trader uses a mixed strategy in which the informed trader attaches a random order ow, for hiding
information, to the information-based ow that is exactly the same as in Kyle’s model. In addition,
mandatory disclosure unambiguously reduces informed trader’s pro ts, increases market liquidity, and
improves market e ciency. However, they do not analyze how disclosure will a ect informed traders’
strategic trading behavior when there are more than one informed trader. Gong and Liu (2012)
extend their results to multiple insiders. However they do not allow investors to have heterogeneous
information and thus in continuous time, information will be revealed in opening trades and the
expected pro ts for insiders go to zero. Zhang (2004) show that when the informed investor is risk
averse, trade disclosure can reduce market e ciency as the risk averse investor will be facing less price
risk in the future when he unloads his positions and thus will not trade in a hurry.

The rest of the paper is organized into sections as follows. The model is described in Section 1.
Section 2 discusses the condition for equilibrium with public disclosure in a discrete-time framework.
Section 3 o ers a closed-form formula for the equilibrium in a continuous-time framework. Section 4
gives comparative statistics such as the e ects of the number of informed traders and the correlation of
their signals on the intensity of trading, the rate of information transmission, the depth of the market,
and the expected pro ts of informed traders. Section 5 extends the model from a duopolistic setting
to a general multiple players setting. Section 6 concludes. All proofs are left to the appendices.

1 The Model

In this section, we describe a model of two informed investors who are required to disclose their trades
based on the classic model of Kyle (1985). In our model, there are one risk-free asset and one risky
asset. An announcement is made at time 1 that reveals the liquidation value of the asset. The risk-free
rate is taken to be zero. There are 2 risk neutral informed investors and many liquidity traders who
trade for liquidity reasons. Trading takes place over time interval [0, 1). In the discrete-time version

their study on the two-informed trader case is limited to arguing that an informed trader’s incentive to manipulate the

market decreases when the number of informed traders rises.
2In models with disclosure but with multiple trading periods, Chakraborty and Yilmaz (2004) show that when the

market faces uncertainty about the existence of the insider in the market and when there is a large number of trading
periods before all private information is revealed, long-lived informed traders will manipulate in every equilibrium. Brun-
nermeier (2005) how disclosure of intermediary public information can cause investors with short term noisy information
to manipulate the market.



of the model, there are M periods over time [0,1), and the time between any two consecutive trading
periods is t=1=M.

Let v denote the liquidation value of the risky asset at time 1. Before any trading starts, each
informed trader i (i = 1;2) receives a mean-zero signal s’ at time 0. We assume the signals and the
liquidation value of the risky asset has a non-degenerate joint normal distribution that is symmetric
in the signals.> More speci cally, we have

s! = 5 (1.1)
§? = V% (1.2)
V= zzjs": (1.3)

The variances of v; are denoted 2 and 2 respectively.
We use to denote the correlation coe cient of s' with s2.

2 2
= =3 (1.4)
In the special case of ? =0, =1, each informed trader has perfect information about v. For
convenience, we also introduce the following notation
var(v) — var (v|s') _ var~'(v|s') — var~! (v)

var(v) var—1(v|st)

This is a measure of the quality of private information of informed investor 1 and by the argument of
symmetry, informed investor 2 as well. Speci cally, o is the \R-squared™" in the linear regression of v
on s’ for an arbitrary i, i.e., it is the percent of the variance in v that is explained by a single informed
trader’s information. Alternatively, it is also the percentage drop in precision of the informed investor
to that of the market maker. It is easy to check that  is related to by the following equation
2

l .
2 24 2

€

(1.6)

Thus, when  is larger than, equal to, or smaller than1/2, informed investors signals are positively
correlated, uncorrelated or negatively correlated respectively. When . is small, each informed investor
has very precise information of the liquidation value. However, when is large, each informed investor
has very coarse information about the liquidation value.

In each trading period m, a risk-neutral market maker receives the total order from all the informed
investors and liquidity traders. Based on such order information, the market maker adjusts the price
P,._1 to a new price P,, at which he buys or sells the risky security to clear the market in period m.
Since the market maker is assumed to be risk neutral, price P,, must be the conditional expectation

3Symmetry means that the joint distribution of the asset value and the signals s', s? is invariant to a permutation
of the indices.



given all public information. We use x¢ to denote informed trader i’s order, and use z°,



In particular, in a linear equilibrium model that we will focus on, it is P,,.;1 — V,, (as opposed to
Pno1 — Pp) that will be linear to the total order ow submitted in the (m + 1)th trading period.

Let x! denote the history of trader i’s trade in each past period before and including period m
(i.e., {Xi :k=1;:::;m}), let y, denote the history of the net trade before and including period m
(i.e., {zk+zj1<Z<2 xi k=1, m}) and let P, denote the price history before and including period
m (i.e., {Py :k=1;:::;m}). Wlth disclosure, informed trader i’s private information prior to trading
in period m includes hIS own signal s and the history of all past trades and prices x., ;%% _;P,._;.
Let

Xt =X (s’ X2 P

’ml’ml’

represent the optimal strategy of informed trader i. Let
P = Pr(Xp_1i X013,

represent the optimal strategy of the market maker given the history of all orders and the current
aggregate order.

Let X? and P denote the strategy functions for informed trader i and the market maker, respec-
tively. Given the strategy functions for informed traders and the market maker, the pro t of informed
trader i from trading in period m and on can be written as:

XL XEP)Y =) (v = P
k>m

An equilibrium of the trading game exists if there is an 3-dimension vector of strategies, (X*; X?;P)
such that :

1. Forany i =1;2 and for all m = 1;:::; M, if X% # X,

E { G X)) st x5 x3 m_l)}

m ’ml’ml’

> E[ in(:::;kZ. NS X0, X2 1P ]

i.e., the optimal strategy is the best no matter which past strategies informed trader i may have
played.
2. Forallm=1;:::; M, we have
Po = EIVIX;,_1:X0_13Y, 1

i.e., the market maker sets prices equal to the conditional expectation of the asset value given
the order- ow history.

In this model, since investor i’s trade at period m will be disclosed afterwards, the pricing and
trading strategies described earlier for the no-disclosure case cannot be an equilibrium in the new
setting. To see this, suppose the informed trader follows a strategy of*

Xi= ., tsin + Ll(Xin—l) + |—2(X71n—1; Xgn—l)

1
m

“We restrict our attention to symmetric linear equilibria.
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where L; is a linear function of all public information. Then the market maker would infer

_ 219‘9[)% — LX) — La(Xp, 13 X2, )]
m [

Vv

and choose , , ) )
_ Za<i<alXy, — Li(X, 1) — La(X;, 15 X5, )]

Pm+1 - . t
in the next period. Hence, in the next period, the market depth would be in nity. Understanding this,
the informed traders would have incentive to choose ®  # x! which is inconsistent with the proposed
equilibrium strategy.
We analyze a symmetric linear equilibrium. In particular, the informed trader’s trade can be
written as

Xio= o, tst LX) F Lo xR )+ 2 (2.1)

m

where (1) ,, ts’ represents a private-information based linear component, (2) L;(x!, )+

Lo(x! ;%2 ) is a public-information based linear component, and (3) z! is a noise component with
z! being normally distributed with mean 0 and variance 2, t. Since informed traders are prevented
from market making activities, we further assume that z’, are independently distributed across agents.
The market maker also uses linear rules for setting prices before disclosure and for updating his value

estimate after disclosure. In particular,

P, = V,_ 1+ m(z?n+ > xfn>; and

1<i<2

V,, = V,,_+ m(z xfn>:
1<i<2

The preceding equations imply that the random order from liquidity traders only has a temporary
e ect on price formation. In particular, liquidity traders’ order in period m (i.e., z%) only a ects P,,
but not P, for any k > m+1: Once the mth-period disclosure is made, the market maker immediately
abandons z° and adjusts his belief of asset value to V,,, which is not a ected by z° and will be the
base for forming future prices P, (k > m + 1).

Before stating our result, we rst introduce some notation. Let F,, and F/ denote the information
set of the market maker and informed trader i respectively after disclosure has been made in period
m. De ne

Vi = ENFLL
V,, = E[V|F.];
m = Var[v|F,];
m = Var[v[F'], and

m m,



Theorem 2.1 The necessary and su cient conditions for a recursive linear symmetric equilibrium to

exist are described below. For all m=1;-..;M — 1 and for all informed traders i = 1;2;

. t . .

Xiw = 5"y Vo)) 2, (2.2)
m—1
2 B
Pm = Vm—l + o (Z?n + inn> (23)
=1
2 .
V,, = V,,_1+ mijn (2.4)
=1
m = om w2 ) (2.5)
m = m m—1= 7271 t m—1+1+2 7277) (26)
; ; m—1" m i Zj
Vi-Vi, o= (v—vnal+ mt> @.7)
m—1 m
V= Vpy = 2 myy ey Pm (2.8)
m—1 1<i<2 m t

m = ot A (D) (2.9)
S T A VA (2.10)
E[ 1Zn|F7’Lnfl] = mfl(vnilfl - mel)2 + m—1 (211)
m = m %1 (2.12)
= = (2.13)

" 2— oom t(1—-1=(2 ;1))

2t 1\’

1 = 1--= L — 2.14
R O T e r=1) @19
2

— 2 m 2 2

subjecting to the boundary conditions

[ 2 -
= =M (2.16)
M- t

\/2 M-1 M—1= U

B
3[\'}

= 2.17
M 1 + 2 M1 7 ( )

1
4 = : 2.18
M m(L+2 y1)? (2.19)
M—-1 — 0, (219)

and the second order condition

v =>0: (2.20)

In general, the system of recursive equations can be solved by conjecturing an initial value of ,;
and then solve recursively for ,;_o;:::; o. The initial value of ,,_; is then adjusted until the derived
o matches the given . Details are given in Appendix A.
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In {he sp__e&'al case that .= , the model can be solved in closed form:

_ Vo
™2
m:2m

_ 1
™ 2M=—m+1) ,
9 _ M—-—m

m T oM —m+ 1)
m = (l—m:M) 0

m  — (1—m=M) 0

=

m

oS~
3

m

These results are exactly the same as the monopolistic case derived by Huddart, Hughes and Levine
(2001). This is in sharp contrast to earlier results on imperfect competition of informed traders without
disclosure. Foster and Viswanathan (1996), Cao (1995) and Back, Cao and Willard (2000) have shown
that competition causes the market to be very illiquid and ine cient near the end of trade when there
is no disclosure. With disclosure, we nd that informed traders act in the aggregate as a monopolist
when their signals are uncorrelated. This is because, with disclosure, informed traders will always
know as much about others’ signals as the market does. If informed traders’ signals are uncorrelated to
begin with, they remain uncorrelated due to public disclosure of trades after transaction is completed.
Therefore, disclosure makes informed investors coordinate with each other to maximize their pro ts
and they act like a monopolist in the aggregate. On the contrary, without disclosure, each informed
trader gradually knows more about others’ signals than the market maker since he knows what he
traded in the past. Indeed, the conditional correlation coe cient of informed investors signals goes to
—1 in a the setting without disclosure even when the initial correlation coe cient is zero.

In another special case where the number of trading periods goes to in nity, the model approaches
to the continuous-time model. Ignoring higher order terms of t, we have the following:

M= @® @®
M = (® (®-=2
(t)? = 1=2

O

t = 2 X



In the limit, these di erence equations converge to the set of di erential equations described in Theo-
rem 3.1 and the lemmas in Section 3.

3 Informed Trading in Continuous Time with Public Disclo-

sure

In this section, we derive closed-form formulae for the linear equilibrium of informed trader trading
in a continuous-time framework. The section is divided into subsections as follows. Subsection 3.1
introduces necessary notations to state the main theorem. Subsection 3.2 contains the main theorem
of the section. Subsections 3.3 and 3.4 outline the proofs of the main theorem by considering the
value estimation processes and the informed traders’ optimal trading strategy, respectively.

3.1 Model Setup

In this subsection, we introduce the basic notations and concepts for the continuous-time model. Most
of these notations (e.g., (t) and P (t)) have already been used in the discrete-time model but will be
rede ned here for an identical or similar quantity in the continuous model.

Like in discrete time, we use s’ to denote the signal of informed trader i and assume v =3,,.,s".
We use P (t) to denote the price set by the market maker for trading at time t, and we use V (t) to
denote the market maker’s adjusted belief of the risky-asset value immediately after the disclosure of
informed traders’ trade at time t. Also, we use x‘(s; t) to denote the total order of informed trader i
up to time t, and we use z°(t) to denote the total order from all liquidity traders up to time t.5

For the price process, linearity means that there exist functions (t) and (t) such that the market
maker adjusts the risky asset’s price and the post-disclosure value estimate by multiplying (t) and

(t) with the new orders from all traders and those from all informed traders, respectively. More
precisely, we have

v = (1) > dx(t); and (3.1)
Pt+dt)—V () = (b (dzo(t)+ > dxi(t)): (3.2)

It should be noted that although at any time t, P (t) and V (t) only di er by an in nitesimal due to the
liquidity traders’ trades,® this in nitesimal will be important in calculating the pro t of an informed
trader, as we will see in the proof of Lemma 3.5.

°In contrast, in the discrete-time model, we have used x?, to denote informed trader i’s instantaneous order at time
m, rather than his cumulative order up to time m.
61t can be shown that V() — P(t) = A(t) Sy, ep dai(t) — A(E) (dzo(t) +3 s dxi(t)), although we do not need



We require that the trading strategy x‘(s‘; t) depends only on the trade history up to time t (e.g.,
it is independent of future value of x? for any j = 1;2). We also require that the trading strategies to
be such that Equation 3.1 with boundary condition V (0) = 0 has a unique solution V. Furthermore,
we require the solution P to have a nite second moment and to have paths belonging to C, where C
denotes the set of continuous functions f: [0;1) — R such that lim,_,; f(t) exists and is nite. This
is a restriction on the strategy sets of the traders: given that agents i # j follow linear strategies to
be described in Equation 3.3, we require agent j to follow a strategy such that Equation 3.1 has a
solution with the desired properties.”

For the trading strategy, linearity means that the rate of purchase for informed trader i can be
speci ed as follows

dx‘(s’;t) = (t)s‘dt + F(t)dt+ dz'(t) for1 <i<?2 (3.3)

where f(t) is a certain function of all public information available up to time t and z‘(t) is a (non-
standard) Brownian motion with instantaneous variance

dz'(t) = “(t)dw(t) for1 <i <2 (3.4)
To be consistent with the discrete time model, we assume that dz°(t) is a standard Brownian.
var(dz’(t)) = dt: (3.5)

We restrict our attention to symmetric equilibria such that (t) = (t) for all i and in equilibrium,
we show that (t) = 1=1/2.

Since informed investors are assumed not to participate in market making activities, each dz’ is
uncorrelated with both noisy trader’s trade dz® and all other informed traders trade dz’ for all j # i.

While we have only included t in our notation f(t), it should be emphasized that f(t) can be an
arbitrarily complex function of all public information available before and including time t, such as
the history of all the orders submitted by all the informed investors and the liquidity traders, which
are revealed to the public through disclosures. We leave f(t) in this very general form for now and
will make it more explicit later.

In most previous studies in the literature, f(t) is simply the asset price at time t multiplied by
a certain function (t), which solely depends on time t but no other information (see Kyle (1995),
Back, Cao, and Willard (2000), and Huddart, Hughes, and Levine (2001)). In our current model,
however, f(t) has to depend on more public information other than price. Indeed, it can be shown in

"See, e.g., Protter (1990, §V.3) for conditions that guarantee the existence of unique solutions to stochastic di erential
equations. Our approach has the disadvantage of linking the feasible set for each trader to the strategies assumed to be
chosen by the other traders and the market maker. In this respect, we are modeling a generalized game rather than a
game. It would be better to de ne a feasible set for each trader and a set of A functions for the market maker such that,
given any vector of choices from these sets, the stochastic di erential equation de ning the price has a unique solution
with the desired limits existing. However, this approach would lead us into a thicket of technicalities that we prefer to

avoid.
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the discrete-time model that informed traders’ order ows of the form (t)s’ + (t)P(t) (where (t)
is a function of time t only) does not constitute an equilibrium.
It may be natural to consider trading that is linear in a trader’s updadt.netitmat nf tha nasse ivalu



3.3 Value Estimates and Variances

In this subsection, we consider the Itering problems of the traders and market maker in detail.
Throughout this section, we assume (t) used in Strategy 3.3 is a continuous and non-negative function.

Let F = {F(t)|0 < t <1} denote the Itration generated by the aggregate informed traders’ order
process

Z X' (t):

We interpret F as the market maker’s information structure. Under the new notation, V (t) = E[v|F(t)]
where the conditional expectation is taken after the disclosure at time t. We de ne (t) as®

(t) / (U)? du + (0) (3.8)

Lemma 3.1 Assume each trader i follows a linear strategy as in Equation 3.3. Then (t) = var[v|F(t)],

where the variance is calculated after disclosure at time t. De ne

W)= > z'(t) + /Ot U {v -V (u)} du: (3.9

1<i<2

The process W is a Wiener process on the market maker’s information structure F. Furthermore,

V(1) = /Ot () (U)dW (u): (3.10)

The process W is called the \innovation™ process for the market maker’s estimation problem. The
di erential

dw(t) = > dz'+ (t){v-V(t)}dt

1<i<2

is the unpredictable part of the order ow from informed traders (recall that from the market maker’s
viewpoint, the expected order from informed traders is 0). The lemma shows that the market’s estimate
of v is revised according to dV = dW. Moreover, having the changes of both value estimates and
prices proportional to orders as in Equations 3.1 and 3.2 implies that these changes are unpredictable,
as they must be when the market maker is risk neutral and competitive.

Consider an arbitrary informed investor j (1 < j < 2). Assume that the other informed investor i
(i # j) follows a linear strategy as in Equation 3.3, and assume that j follows an arbitrary strategy,
which may or may not follow Eqaution 3.3. Let F/ = {F7(t)|0 < t < 1} denote the Itration generated

8 In the discrete-time model, we de ne (t) as the variance of the asset value conditional on the market maker’s
information. Here, we choose to de ne (¢) by a mathematical equation and then prove that it is equal to the same
conditional variance under certain conditions (see Lemma 3.1). Alternatively, we could de ne (¢) as the desired
conditional variance and then prove Equality 3.8 in Lemma 3.1. But such an alternative approach does not o er us a
easy-to- use mathematical formula for (¢) when conditions in Lemma 3.1 do not hold. Finally, we remark that it can
be veri ed (see the proof of Theorem 3.1) that the function (¢) de ned here is the same as that used in the statement
of Theorem 3.1.
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by s/ aﬂ%\l}{zﬁ)%f ow of all traders i (i # j)38.13)is is informed trader i’s information structure. We
want to describe the conditional expectation and conditional variance of v, given his information. In
cess W/ ipagabultire we deemee between the actual order and
puting the expected order using trader j’s information.The

set value v is revised as dV 7/ =/ U’ = E[v—-¢|F (@) and _
Vi = ¢/ +U t after the informed

1 .
+ (3.11)j C
° ‘ a linear strateg
disclosure at tin
i[zi(t)+/t (u){v — v} dul: (3.12)] W

0

so= 5+ [



Lemma 3.4 Assume that each informed trader believes that all other informed traders follow Strat-
egy 3.3. The following is the only trading strategy such that (1) it satis es Equation 3.3 and (2)
Equation 3.1 is a rational pricing rules for the market maker:

dx‘(t) = _© (vi(t) -V (t)) dt+ ‘dwi(t); 1<i<2: (3.16)

2 (1)

Moreover,

® = @© ®; (3.17)
and the trading strategy supports pricing rule given in Equation 3.2 with

Yi<i<o )?

O = OO Ly

(3.18)

Given Equation 3.17, the entire equilibrium is determined by (t). To see this, note that

= (> ©*=- "(v);

where the second equation follows from Equation 3.8. Therefore, the function (t) is determined by
(t). The condition (t) = (t) (t) then determines (t).
To determine (t) or, equivalently 1= (t), which Kyle (1985) calls \the depth of the market," we
turn to the equilibrium condition that has not yet been exploited, namely, the requirement that each
informed trader’s trading strategy be optimal.

3.4 Optimal Trading and Market Depth

In this subsection, we derive the optimality condition for an informed trader’s trading rules. Such a
condition turns out to be a restriction on market depth.

Throughout the subsection, we focus on an arbitrarily chosen trader, say trader j. Assume that
each trader i # j follows Strategy 3.16. By Lemma 3.4, trader j’s trading strategy can be written as
xi(s?:t;P*"), where we use P*’ to emphasize that trader j’s strategy a ects the price process. We de ne
a trading strategy x/ to be feasible for trader j if there exists a unique solution P*’ to Equation 3.1
(with boundary condition P*’'(0) = 0) for the given and for the given that characterizes the other
traders’ strategies and if

Mq P (t) exists and is nite a.s., (3.19)
1 o ,
/ dx’ (SJ; u; P”“) exists and is nite a.s., and (3.20)
0
1 )
E / P+ ()2 dt < oo: (3.21)
0

Note that the integral in Expression 3.21 is the limit of the integral over [0;t] as t — 1. The limits
in Expressions 3.19 and 3.20 de ne, respectively, the price and number of shares held by trader j just
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before the announcement. Condition 3.21 is the \no doubling strategies™ condition introduced in Back
(1992). Given the existence of the limits, the integral

1 V—PYt+dt))dx (s/;t;P*); (3.22)
A ) ax ( )

exists and equals to the pro t of trader j. The formula is is derived from the Merton-type wealth
equation, and the existence of the integral can be veri ed by integrating by parts as in Back (1992).

Lemma 3.5 Assume each trader i # j plays a linear strategy as in Equation 3.16. The conditions

d 1\ 1)
£()" o)
) = gc); (3.24)
and
!irlm (t) =0 or !EH (t) =+ (3.25)

are necessary and su cient for Strategy 3.16 to create an optimal expected pro t for trader j, which

is equal to .
2( 3')?

(2+ 2O

If 2= 2 then the right-hand side of Equation 3.23 is zero. Therefore, market depth (which
is 1= = 2= ) must be constant. If 2 > 2 then the right-hand side of Equation 3.23 is negative.
This implies that in such a case market depth 1= must be declining over time. If 2 < 2, then the
right-hand side of Equation 3.23 is always positive. This implies that in such a case market depth 1=
must be rising over time, in contrast to the results in the setting without disclosure obtained by Back,
Cao, and Willard (2000), in which market depth rst rises to its maximum and then fall to 0. The
di erence occurs because the conditional correlation in our model is positive when 2 < 2 and never
changes sign but in Back, Cao and Willard, the conditional correlation will converges to -1 even when
it was positive at time zero.

Condition 3.23 is a local condition for optimality at each t < 1, which we will discuss below.
Condition 3.25 means there is no money \left on the table" an instant before the announcement. If
the rst condition of 3.25 holds, then the market’s information about v is precise by the announcement
date, and the asset will be correctly priced. If the second condition of 3.25 holds, then the market is
completely illiquid just before the announcement, so, even if the asset were mis-priced, there would
be no pro table trades available. These conditions are not mutually exclusive. In fact, only the rst
condition holds in our case, which is contrasting with both conditions hold in Back, Cao, and Willard
(2000).

w1l o ©-2© W) (3.26)
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4 Comparative Dynamics

In this section, we use the closed-form equilibrium formula derived in the previous section to study
the comparative dynamics of the equilibrium and compare the equilibrium against that obtained by
Back, Cao and Willard (2000) in the case of no disclosure. For comparison, we use " to denote the
conditional variance in the BCW model and the same holds for other parameters.

Theorem 4.1 In the continuous time trading model without public disclosure, there exists a unique

symmetric linear equilibrium. In this equilibrium, the informed investors submit a market order of

iy — Ay (i VO - O i |
dx'(t) = " (t) (s > )dt 20 (V'(t) — V (b)dt; (4.27)
and the market maker set the price according to

dP@) =" (f: dx(t) + dzo(t)> : (4.28)

and )y
M= P g”lne(l — t): (4.29)
O = (4.30)

S VIt '

" = "®"©: (4.31)

Notice that " (t); "(t); "(t); "(t) in the economy without disclosure corresponds to the same param-
eters without the hat in the economy with disclosure.

While in most strategic trading models, the trading volume coming from the informed traders is
negligible compared to the noise traders. However, when disclosure is required, informed investors’
trades contains a component of positive quadratic variation that is comparable to that of the liquidity
traders:

Corollary 4.1 Informed investors contribute half of the trading volume in the market with disclosure.

In each period, the informativeness of informed investors’ trade is measured by (t) because the
total information based trade in period t to t+dt is proportional to (t)(v —V (t))dt. The variance of
the aggregate randomization noise is dt and the increase in market maker’s precision is 2(t)dt. The
derivative of market maker’s conditional precision is (1= (t))’ = 2(t). The following describes how
disclosure a ects (t); (t).

Corollary 4.2 Informed investors’ trade information based trades are more aggressive and the market
is more e cient, that is

®W_ 1
") VI-t




2 2In(1 -
O _ - in0-y
(t) 2+ 2t=(1-1)
Moreover as time approaches 1, we have,
Iimﬁ = o0; Iimﬁ =0;
t—1 (t) t—1 (t)

Disclosure makes the market more e cient. Since informed investors’ information based trade is
mixed with more noise trades, they trade more aggressively with respect to their signal. This e ect is
most profound near the end of trade as the ratio of with and without disclosure goes to zero. Figure
1A shows the intensity of informed investors’ trading in relation to that of informed trading without
disclosure. The intensity is greater when disclosure is required. Figure 1B shows the ratio of trading
intensity with and without disclosure. It is always larger than 1 and goes to in nity near the end of
trade.

As a result of more aggressive trading by informed investors and the fact that the random order
from all informed investors collectively equals, in distribution, to that of the liquidity traders, market
becomes more e cient under the disclosure rules. This is clearly demonstrated in Figure 2.

We next examine the comparative statics of (t); (t); (t) with respect to time and the degree of
noise of informed investors’ signals, as measured by ..

Corollary 4.3 The variables (t), (t)~! all increase with t and decreases with .. The variable (0)
decreases with . and (1) increases with .. The variable (t) decreases over time when . > ., while

(t) increases over time when < .

When . is small, informed investors trade very aggressively with each other and thus (t) is
high and (t) is low. As more information is revealed through trading and disclosure, clearly (t)
will increase over time. Similarly, as investors learn more from trading and disclosure and market
becoming more e cient, the trading intensity increases over time as well. The comparative statics on

(t) is more complicated. When . is small, each investor is very well informed and they trade very
aggressively in the beginning. Thus (0) decreases with .. Similarly, with very aggressive trading in
the beginning, the market becomes more e cient later and thus (1) is low with small .. Moreover,
with small ., higher market e ciency due to aggressive trading also means that market liquidity will



When informed investors’ signals are uncorrelated initially, each informed investor’s conditional
precision is twice of that of the market maker. As trading goes on, since each informed trader knows
his own randomizing trade, the noise in the other informed investor’s trades is also half of the variance
of the noise in the market maker’s observation. As a result, the conditional precision of each informed
trader’s expectation about the asset value is remains twice of that of the market maker. As a result,
informed investors conditional correlation remains zero. Disclosure makes informed investors cooperate
with each other.

Corollary 4.5 When 2 # 2 ast — 1,2 — 1 and informed traders’ private valuations become

uncorrelated and they all behave in the aggregate like a monopolistic informed trader with all the
information in the economy. We have

® Chm O @

— 7 =171 lim— =1
=(.(1-1t) - anraon il =2

Even with correlated signals, informed investors learns to become cooperative. As discussed earlier,
the increase in conditional precision for the informed investor is twice of that of the market maker. As
learning accumulates, the ratio of the conditional precision of the informed investor and the market
maker about the asset value converges to two. As a result, the conditional correlation among informed
investors converges to zero. This is drastically di erent from the case without disclosure. In Back, Cao
and Willard (2000)’s model without disclosure, near the end of trading, the ratio of the conditional
precision of the informed investors and that of the market maker about the asset value converges to
1 as the increase in conditional precision goes to in nity. This holds because the noise in the price
comes from the noise traders and no one has any extra information about the noise trades. Therefore
the increase in conditional precision is the same for the market maker and the informed traders.
As time goes to 1, the increase in conditional precision goes to in nity and the ratio of conditional
precision between the informed investor and market maker goes to 1. Informed investors has little
informational advantage over the market maker, the asset value the conditional correlation of investors’
private valuation goes to -1 and (t) goes to in nity. On the contrary, in continuous time trading with
disclosure, investors learn to become cooperative. The conditional correlation of investors’ private
valuation goes to zero and (t) goes to a constant.

In Figures 6-9, we examine how (t); (t);1= (t); (0) changes with .. In Figure 6, it is clear that

(t) decreases with .. Coarser information makes investors compete with each other less intensively.
As shown in Figure 7, market also becomes less e cient as . increases. Near the end of trading,
conditional variance decreases almost as a straight line, like the monopolistic setting. Figure 8 plots
market depth with disclosure. With low ., market depth increases over time as informed traders trade
very aggressively to start with and market is less liquid in the beginning but as more information is
revealed, the market becomes more liquid. With high ., investors trade cautiously in the beginning
and start to trade more aggressively later as they learn more from each other through disclosure. As
a result, market liquidity drops over time. With uncorrelated signals, market e ciency and market
liquidity are the same as if there exists a monopolistic informed investor with all the signals in the
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market. It follows that informed investors’ pro ts is maximized with when .=  as shown in Figure
9. Notice that in the setting without disclosure, informed investors’ pro ts are maximized when . is
slightly larger than .

Next we examine market depth, 1= (t) de ned by Kyle (1985). The expected pro ts p is related
to market depth as described in Theorem

Corollary 4.6 As time approaches 1, we have

m 1:/\('[) =
t—1 1= (t)

Moreover, when . < ., then 1= (t) > 1="(t). In addition, (0) < ~(0).

There are three factors that a ect market liquidity. The rste ectis the randomization e ect which
will increase market liquidity under disclosure. Other things being equal, this e ect will double market
liquidity. The second e ect is the trading intensity e ect due to private information which decrease
market liquidity under disclosure. While both the informed investor and the market maker learns from
public disclosure. The noise in the publicly disclosed trades for the market maker is 32, (t)dWi(t)
but the noise for each investor i is (t)dW7(t);j # i. Therefore informed investor i learns more from
the public disclosure than the market maker and this e ect will decrease market liquidity. The third
e ectis the market e ciency e ect which increase market liquidity under disclosure because of a lower
residual uncertainty.

Figure 3 plots the market depth with positively correlated signals. As shown in Figure 3, when

2> Zthe last two e ects roughly o set each other except near the end of trade. Therefore, the rst
e ect is dominant in early part of the trading period and market liquidity roughly doubles. However
in the latter part of the trading period, disclosure makes the market much more e cient and the third
e ect is dominant and market liquidity is much higher. Therefore, market is always more liquid with
disclosure.

In brief, when the noise in informed investors signals is small, informed investors don’t learn
from each other as much. As they trade more aggressively on their perceived di erence from market
expectation under disclosure, market depth is higher with disclosure due to randomization and higher
market e ciency, a component in informed trader’s trade which makes the proportion of informed
trade less signi cant. It is interesting to observe that market depth changes over time in a pattern
that isdi erent from no-disclosure case. In the case of multiple informed traders of positively correlated
signals, market rst rises and then declines to 0 when this is no disclosure requirement; but market
depth always rises in when there is disclosure requirement.

Corollary 4.7 For t > 3=4, there exists * > , such that for . > [, that 1= (t) < 1:A(t). In
addition, there exists **> , such that for > **, (0) > ~(0).

€ I

This is a rather surprising result. Intuitively, one would have expected that disclosure should
always increase market liquidity. As we discussed earlier, the e ects of trade disclosure on market
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liquidity can be decomposed to three components: randomization e ect, trade intensity e ect and the
market e ciency e ect. When  is very small, each informed investor on his own knows very little
about the value of the liquidation value of the risky asset. Therefore they learn a lot from disclosure
of informed investors’ trades. Since the variance of noise in disclosed trades is 2 2dt for the market
maker and 2dt for each informed trader, informed investors learns faster from disclosed trades than
the market maker. When . is very large, the learning from public disclosure becomes very signi cant
and this e ect dominates the other two e ects which causes the market liquidity to be higher for some
t. Moreover, the reduction in market liquidity can result in higher pro ts for very large ..

The e ect of disclosure on informed investors’ pro ts is ambiguous. Other things being equal,
disclosure causes the informed investors to lose half of their information based trading pro ts due to
randomization. This results in a reduction of informed investors’ pro ts when . is small. With large

., the results can be reversed. In the latter case, informed investors learn a lot from the disclosed
trades about the asset value as they each have very imprecise signals in the beginning. In addition,
the informed investors learns more from the disclosed trades than the market maker. The increase of
precision is 4 times of that of the market maker. Consequently, the increase of learning by informed
investors could more than o set the loss due to randomization and make them earn more pro ts than
what they would receive in a setting without disclosure. Alternatively, we can view disclosure as
an apparatus for coordination. Notice that informed investors’ pro ts would be maximized if they
could coordinate and trade at the same intensity as a monopolist with the same information. When
each informed investor has very imprecise signals, they trade very cautiously, far from the level of a
monopolist. Disclosure of trades releases information and make them trade more aggressively toward
the level of a monopolist. The increase of trading intensity e ectively coordinates their trading activity
toward higher pro ts, and can o set the losses due to randomization when . is low.

Figure 5 plots the ratio of informed traders’ pro ts as a function of .. Notice that the informed
investors’ total expected pro ts could be larger under trade disclosure for large ..

Disclosure makes informed investors learn to cooperate. Thus it is interesting to determine how
disclosure a ects an informed investor’s pro t with and without competition. Will an informed investor
facing competition be better o ? As shown in BCW (2000), this can never happen in a setting without
trade disclosure. However in our setting with disclosure of trades, it is possible. Let p denote the
expected pro ts of a single informed investor in a duopolistic setting and ,;, denote the expected
pro ts of a single informed investor in a monopolistic setting and ”~,, that of an informed investor in
a monopolistic setting without disclosure. We have

Corollary 4.8 There exists ~, such that for >, p>"y> .

This holds because, with very large ., investors each has very noisy signals and are eager to learn
about from each other. Disclosure of trades let investors to learn from each other about the market
value at a speed (as measured by the increase in conditional precision) four times as fast as that of
the market maker. Notice this cannot happen in the setting without disclosure as informed investors
learn at the same speed as the market maker. With very large ., the bene t of learning can o set the
loss due to competition and informed investors are better o with competition. Interestingly, learning
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from each other is so bene cial that an informed investor with disclosure and competition is better o
than what he expects to receive with neither disclosure nor competition. disclosure

Our analysis indicates that learning can create synergies in the presence of disclosure. Suppose
that each informed investor has to spend c to collect di erential signals as described before and the act
to collect information is observable by market participants, then we have the following herding result
regarding information acquisition:

Proposition 1 When > ”".and p, >c> ,;, there exists two information acquisition equilibria:
(i) in the rst equilibria, no one would acquire any private signals; (ii) in the second equilibria, both

informed investors will acquire private signals.

5 Extension

Our model can be extended to arbitrary number of informed investors with the following modi cation.
Assuming that each informed investor i = 1;:::; N receives a signal in the form of

v+

P = Z 5.32
8= (5.32)
in addition we have N
Zj:l J
= - == 7 5.33
N (5.33)
and that v;{ ;;i =1;:::; N} are multi-variate normally distributed and independent with mean zero.

Moreover, ; has variance 727 for all i. Let 2 denote the variance of , it follows that

2 N-1 2.
e N n:

When N = 1, the informed investor knows v and our model reduces to HHL (2001). Let denote
the correlation of investor’s private signals, it is easy to verify that

(5.34)

5= 2=(N-1)
2 4 2 ’

v €

(5.35)
Given these notations, we present the discrete time model and continuous time model below:

Theorem 5.1 The necessary and su cient conditions for a recursive linear symmetric equilibrium to

exist are described below. For all m=1;-..:M — 1 and for all informed traders i =1;---;N;
. . .
xi, = Vit = Vi) + 20, (5.36)
N m—1
N .
P, = V, 1+ . (zg1 + Zx%) (5.37)
=1
N .
Vi, = Voot + ijn (5.38)
1=1
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m  — m mflz( 1%1 t m71+1+N 2) (540)
Vi—yi o= _mtl om (v—vz Z ) (5.41)
m—1 jA£i m
_ j
Vo~ Vg = 2 v, Y (5.42)
m—1 1<j<N ™ t
w = aat on B(N-1) ) (5.43)
b= Lo+ 2 t=5(N 2) (5.44)
E[ LIF0 ] = eV = Va1)® + (5.45)
m = m (5.46)
= m 5.47
2— mom t1—1=(N ,,_)) (5.47)
2t 1 ?
m-1 = m <1 - W <1 N ml)) (5.48)
2
— 2 m m 2 2
subjecting to the boundary conditions
N
M= e (5.50)
mM—1 t
\/N M-1 m—1= t
= ; 5.51
M 1+ N (5.51)
1
-1 = ; 5.52
a m(T+N )% (552
M1 = 0; (5.53)
and the second order condition
wm=>0: (5.54)

Similar to the case of two informed traders, the equilibrium can be solved recursively. When , goes
to zero, the system converges to a set a di erential equations derived in the continuous time trading
model presented below

Theorem 5.2 In continuous time trading, there is a unique symmetric linear equilibrium speci ed as

follows
= V_(t§) ®="-" ( CEREOY
where
t = ©O@-t) for 2=(N—-1) 2orN=1
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: (0

N_D) 2 (1—B)t+B)Ts¥ —1| otherwise

M =

2l —

2

37
where B = ((I\I—61)3> ;0= 2

In equilibrium, the expected pro t of each informed investor is

a1/ (0) for 2=(N-1) ,or N =1,

1 1

N (t)dt = _p S (5.55)

N /0 STOTETn g :
\/N(lB)((Nugggg) STN—3] otherwise.

For the purpose of comparison, we restate the Back, Cao, and Willard (2000) result of continuous
trading equilibrium without disclosure in the next theorem.

Theorem 5.3 If there is more than one informed trader (N > 1) and their signals are perfectly cor-
related ( = 1), then there is no symmetric linear equilibrium. Otherwise, there is a unique symmetric

linear equilibrium. Set " (0) = var (v), and consider the constant
Kk = / S 2N=2)/N o=22(1-6)/(N$) dy- (5.56)
1
For each t <1, de ne "(t) by
/ HOPED a2 210 49) g = et (5.57)
1

The equilibrium is

(N—2)/N

A KN 1/1- \™0)) .
® = <“<0)> (“(0)> exp{N()“(t)}’ (5:58)
" = O ): (5.59)

With respect to the comparative statics of the case with more informed investors, we have the
following results:

Corollary 5.1 (i)Informed investors contribute half of the trading volume in the market with disclo-
sure; (i) For N =1, we have (t) = "(t); ()= "(v); () ="(t)=2=1=(2 ,); For N > 1, we have

the following results: (iii)

O _ o tim O =

lim = = oc; ~— = 0;
t—1 (t) t—1 (t)
(iv)
im = O — .
t—1 1: (t)
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(v)The conditional variance of the asset value  decreases with t and increases with .. The initial
market depth 1= (0) increases with . and the market depth in the end of trading, 1= (1) decreases with

.. The variable (t) decreases over time when 2 < (N—1) 2 while (t) increases over time when 2 >
(N—1) 2; (vi)When 2= (N-1) 2, informed investors trade in aggregate like a monopolistic investor
and informed investors’ pro ts are maximized. Therefore, market e ciency and market liquidity are the
same as if there exists a monopolistic informed investor with all the signals in the market. Conditional
correlation of investors’ private valuation remains uncorrelated throughout the trading period. When

2#(N-1) 2, ast— 1, N — 1and informed traders’ private valuations become uncorrelated

and they all behave in aggregate like a monopolistic informed trader with all the information in the

economy. We have

| ® . ® . ®
M sa—n & Msa_y b Mgt

Here, S, = %7__%)20, B is de ned in theorem 5.2.

Notice that our results on comparative statics obtained with two informed investors broadly hold
for larger N with some notable exceptions. Although we can’t prove that (t) > "(t), and > " for
all t, we prove it for t close to 1 and our numerical analysis shows that disclosure increases the intensity
of informed trading and improves market e ciency. The increase in market e ciency due to disclosure
also makes the market depth higher near the end of trading. The conditional variance increases as
investors receive noisier signals. Initial market depth is higher with noisier signals as investors trade
cautiously initially. However, market depth in the end of trading will be lower with noisier signals as
there will be more residual asymmetric information near the end. As a result, market depth will be
decreasing with noisy signals and increasing with precise signals. Informed investors’ pro ts will be
maximized if they have uncorrelated signals in which case they coordinate and trade like a monopolist.
Moreover, the conditional correlation goes to zero near the end of trading even when investors initially
have correlated signals. Informed investors learn to be cooperative.

Next we consider whether informed investors is better o or worse 0 with more informed investors
in the market. Let , denote what an informed investor would expected to receive in a setting with
multiple informed traders. Let x_.y_; denote the pro ts each informed investor would obtain if one
informed investor leaves the market and the other N — 1 informed investors will stay and trade in this
market and ,, denote what he would receive if he is the only informed investors in the market.

Corollary 5.2 Then for any N > 1, there exists . such that y > y_y_; forall (> . In

addition, for 1 < N < 5, there exists ~, such that for . >7, x> .

Just like the case with two informed investors, N — 1 informed investors can bene t from the
participation of one more informed investor, if they collectively learn a lot from the new participant
through trading. Indeed, learning can be so bene cial that a monopolist will be better o if N — 1
informed investors all participate when N < 5. However, as N goes to in nity, each informed investor’s
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pro ts goes to zero. In Figure 10, we show numerically that for N = 5, a monopolist would prefer the
other four informed investors not to participate in the market.'°

With two informed investors, it is possible that disclosure increase the aggregate pro ts of informed
investors. We show numerically in Figure 5 that this is impossible when N > 2. With larger N, each
informed investor will learn at the speed N2=(N — 1)? times that of the market maker. However
N2=(N — 1)? is decreasing in N, therefore, for larger N the bene t of learning from each other and
coordinating with each other is not big enough to o set the loss due to randomization.

6 Conclusion

How would disclosure of informed investors’ trades a ect market e ciency, market liquidity and ex-
pected pro ts of informed investors? In a setting with two informed investors, we show that informed
investors will randomize their trades to hide their private information and to manipulate market
maker’s and others’ beliefs. As a result, they sometimes trade against their own valuation. The in-
stantaneous variance of informed traders’ trade is the same as that of the liquidity traders. Similar to
the single informed investor model of Huddart, Hughes and Levine (2001), the market is more e cient
with trade disclosure.

However with more than one informed investor in the market, informed investors also learn from
each other. Contrary to the model of Back, Cao and Willard (2000) in which informed investors
learns at the same speed (measured by the increase of conditional precision) as the market maker,
in our model informed investors learns more than market maker as they know of the manipulating
component in their trades. Consequently, with noisy initial signals, the learning e ect by informed
investors dominates and they make more expected pro ts than what they would obtain in a setting
without disclosure. In addition, an informed investor learn much from disclosure such that he make
more pro ts than he would make if he is the only informed investor in the market. Synergy in the
gains from informed trading also implies that when there is cost in information collection, there could
exit multiple information acquisition equilibria. In one equilibrium, no one would acquire information
but in the other both investors would acquire information.

In the extension to three or more informed investors, each informed investor still learns more than
the market maker, albeit at a lower speed advantage (at the speed of N2=(N —1)? of that of the market
maker). The reduction in the relative speed of learning cause the gains informed investors receive from
learning to be lower than that of the loss due to randomization. As a result disclosure always reduce
informed investors’ pro ts. However, even in the case of three or more informed investors, for very
noisy signals, each informed investor can still bene t from the presence of more informed investors as
informed investors can learn more from each other.

Disclosure also changes the inter-temporal patterns of the market liquidity. In models without
disclosure, Back, Cao and Willard show that informed investors will eventually be on the other side
of the market and market liquidity goes to zero as they cluster their trades near the end of trading.

10This holds also for N > 5 numerically although we cannot provide an analytical proof for this result.
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When the noise in informed investors signals is small, market liquidity will rst increase and then
decrease. For large noises, market liquidity always decreases over time. On the contrary, in our model,
market liquidity is always nite. When informed investors have very noisy signals they will trade
more cautiously in the beginning and thus initial market liquidity 1= (0) increases with .. As time
goes on, investors learn more and trade more aggressively, and market liquidity will also decrease over
time. Indeed, at the end of period market liquidity decreases with .. With small noises in informed
investors’ private signals, informed investors will trade aggressively initially which results in a lower
market liquidity that increases over time.

We considered only the case in which the signals have a symmetric structure that is they all have
the same correlation with each other and the same variance. In the future, it would be interesting
to relax this restriction and it is possible that some informed investors bene t from disclosure while
others would be worse o . Similarly, with asymmetric information structure, it is also possible that
some informed investors may prefer more informed investors to learn from each other while others
would be better o with less competition.

Our model provides the rst example in which informed investors are better with with more public
information. It is worthwhile to examine if this also holds in cases of information disclosure of signals
about asset value, not in terms of trade disclosure. We leave that for future research.

A Proofs for Section 2

Proof of Theorem 2.1 We are here proving Theorem 5.1 the general case with N > 1 and
Theorem 2.1 is included as a special case N = 2. We focus on proving the necessity of the claimed
equations. The su ciency of these equations can be established by reversing the necessity arguments
(see the end of this proof for more details). So in the rest of this proof except in the last paragraph,
we assume that a symmetric linear equilibrium exists, and we prove the claimed equations.

We rst prove Equations 5.41, 5.42, 5.43, and 5.44 simply by assuming that each informed trader
follows Strategy 2.1. These equations will be used in the inductive proofs for other equations.

First, we can easily check the correctness of Equations 5.41 and 5.42 by the fact that the expectation
of a normal variable is precision-weighted average of all received signals. Moreover, the updating rules
of normally distributed variables states that posterior precision equals prior precision plus the precision
of the noise of the signals. Hence, we immediately establish the correctness of Equations 5.43 and 5.44.

Before proving the rest of the desired equations, we rst establish the following useful lemma.

Lemma A.1 Assume (1) each informed trader believes that all other informed traders follow Strat-
egy 2.1, and (2) the market maker believes that all informed traders follow Strategy 2.1. Then,

(V= Va) =N (v — V)

1<i<N
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Proof  First, it is easy to check the correctness of the following mathematical identidy by properties

of normal variables N 1
=~ -0 (A1)

Using this relation and Equations 5.43 and 5.44, we can easily check
“(N—=1) +1=N .. (A.2)
0

In what follows, de ne
Ui =E[v—si|F!]
where the expectation is computed after trade disclosures in period m. Equivaently, we could have
de ned Ul =Vi —si
Since the expected value of a normal variable is equal to the precision weighted average of all
received signals, we have

| - (1 1 oz
UL = U, Y ( )5 (s %))
0 1<k<m k k—1 i#] k t

e 5 <sk k‘ t)] , (A3)

= luj+ m

0 1<k<m |

where the second equation follows from Equation 5.43. (It is easy to verify that Equation 5.43 holds
when each informed trader merely belives all other informed traders follow Strategy 2.1.) Similarly,

R I o e S f%t)]: (A%

1<k<m

m 1<i;<N

Summing up Equation A.3 over j =1;2;:::;N, we have

1<j<N 0 1<j<N 1<k<m

2 i
YUl = EN-1) > g+ , > [th <52+ Zkt)]
m  1<i<N k

= “(N-1) v+N-2V,, (by Equation A.4)
0

m

= (N ,,—Dv+N-"2V,, (byEquation A.2):

m

The last equation is only a slight variation of the equatlity claimed in the lemma.

We have thus completed the proof of Lemma A.1l. Using the results established in proving
the lemma, we next prove that Strategy 5.36 satis es Equation 2.1. In Equation 5.36, X', con-
sists of a random component (z¢,), a component based on public information (Bmm V,.-1), and a
private-information-related component (4% BmAt V’ _,)- By Equation A.3, the only private component
in Z28LVi s equal to

m bt . . : .
N . (sz + (N —1) sl> = ,, ts' (by Equation A.2):
m—1 0
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This proves that Strategy 5.36 satis es Equation 2.1. Moreover, our arguments also imply that to
support a symmetric linear equilibrium, x! must have the following form:

, 4 m L. . .
X —z = VvV, _, + a public-information-based component: (A.5)

m m m
N m—1

Using Lemma A.1 and Equation 5.36, we have

i Z, .
doxt, = 0t (v Vo1 + ISZZS:N - t) ; (A.6)
Therefore, using Equation 5.42 we immediately obtain Equation 5.38 and Equation 5.39 (the derivation
of Equation 5.39 also needs Equation 5.44). Note that in a symmetric linear equilibrium, the value
updating rules must be of the form speci ed in Equation 5.38. Our arguments in this paragraph
together with Equation A.5 also show that to support a symmetric linear equilibrium, Equation 5.36
must hold.

Using Equation A.6 and the rules of conditional expectation of normally distributed variables, we
immediately obtain Equation 5.37 with

. ] 0
cov (v, di<j<n X, + zm>

var(zd, + Yi<j<n Xin)
= m m—lz(q%% tm—1+1+N En)

The last equation is exactly Equation 5.40.

We next proceed to prove Equations 5.45 to 5.54 by backward induction on m, starting with the
last period m = M. As there is no more trading opportunities after the last period, the maximization
problem for each informed trader i is the same as the case without disclosure which has been derived
in Foster and Viswanathan (1996) and Cao (1995). In particular, applying Thereom ??, we know that
the expected pro t function of informed trader i has the form described in Equation 5.45 with the
boundary conditions speci ed in Equations 5.50 to 5.54.

Thus, we have completed the base step. Next, we assume Equations 5.45 to 5.49 are correct for
period m + 1 and prove them for period m. By the induction hypothesis, immediately after the mth
period disclosure, the expected pro ts for future trades (i.e., trades from period m + 1 onwards) can
be written as,

Hence, the maximization problem of informed trader i immediately after the (m — 1)th period trade
disclosure is:

max g,

m

1<j<N

Xin (V _Vm—l - m (ZSI + Z an)) + m(Vriz _Vm)2] + o (A8)

where the two terms inside the squared brackets represent the pro t of the mth trade and the total
pro t of all future trades.
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For informed trader i to follow a random strategy, he must be indi erent between di erent values
of x! . Thus, the coe cients of (x! ) and x! in Expression A.8 must be zero. These two restrictions
respectively imply

m= m o and (A.9)

i
Em—l

V-V, — mfon] =2 . mE! |
J#i

Vi~V — mZX?n] , (A.10)
J#1

Note that Equation A.9 is the same as Equation 5.46. In what follows, we show that Equations A.9
and A.10 together imply Equation 5.47. On the other hand, by Lemma A.1,

S = (Ve Vo Vi V) + 2 (a11)
J#i m—1 i
Hence,
. . 1 ,
E: x| = ,, t|l1-— V!  —V,,_
e N (e [

Applying this relation to Equation A.10, we obtain

1-— m m t+ m m t:(N m—l)_
1- m m t+ m m t:(N m—l)

2 m om.

Now we multiply both sides of the preceding equation with the denominator of the left-hand side of
the equation, and then we use Equation A.9 to substitute all the ,, ? terms by ,,. This leads to

t
me:1+m mt_ = :
[~ ow)

Next, multiplyuing both sides of the above equation with ,, and using Equation A.9 to substitute
m 2by .., we immediately obtain Equation 5.47.
Since we have established that informed trader i is indi erent to x,, Expression A.8 can be sim-
pli ed by setting x!, = 0. Thus,

El [ ] = wEL [(v,;—vmf] +
= (Bl V- Va]) Ve (V- V) + (A.12)

m

On the other hand, since we have assumed x’, = 0 in the pro t calculation, using the updating rule
for normal variables we have

. o mel— m z
Vo = Vg + (v+Z mt)

m—1 m—1 jAi ™M
m_yi n Z A.13
1 m—1 (N . 1) %1 ; m t ( )
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where the second equation follows from Equation 5.43. Moreover, using the pricing rules by market
maker and applying Equation A.11, we have

Vi oV, .

Vm = Vm71+ m m t<v_vm1_m_11>+ mzzgn

N m J#i

Vriz—l — Vi1
N m—1

2 t zJ
Vg + 21 — Vi1 — + o ; A.l4
m—1 N B \Y m—1 Z o t ' ( )
m J#i
where the second equation follows from Equation 5.39.

Now, using Equations A.14 and A.13 and the fact that v is independent of 3~ ., z/ , we have

m?

i v N T A (N-1) 2 t
var, (V. — V) = <(N—1) %1— N Z ) ( m_1+(mt)2) (A.15)

Moreover,
EZn—l[V’rfz - Vil = V’riz—l - Ein—1wm]

_ mom t 1 ; .
= (1 - W (1 N m1>> (Vi1 = Vin—1); (A.16)

where the last equation follows from Equation A.14. Substituting Equations A.15 and A.16 into
Equation A.12, we immediately see that Equation 5.45 is correct for m with and satisfying
Equations 5.48 and 5.49. This completes our inductive step.

So far, we have proved all the desired equations as necessary conditions to support a symmetric
linear equilibrium. In proving these equations, we have used (1) the rationality of the market maker’s
pricing rules and value updating rules, and (2) the optimality of all informed traders’ trading strategies.
Moreover, by reversing these arguments, we can easily check that when these equations indeed hold,
(1) the pricing rules and value updating rules are indeed rational for the market maker, and (2) the
trading strategies of all informed traders are indeed optimal. Therefore, all these equations collectively
form a set of su cient conditions to support a symmetric linear equilibrium. 0O

Discussion on Solving the System of Equations in Theorem 5.1

The whole recursive system of ,.; .. i m: ms ms = Can be numerically solved by rst con-
jecturing a value of ,,;_; and then solving recursively for ,;_o;:::; (. Given the conjectured ,,_1,
we can compute ,,_, since the de nition of ,; and Equations 5.43 and 5.44 imply

Ny =1+ Mﬁl(N 0 — 1)
0
From ,,_, and ,,_1, we can now derive ,,;_;. From the boundary condition in Equation 5.52, we
can determine ,,_;. Now again we conjecture a value for ,,_ 5, which allows us to derive ,;, , and
Mm—2 as before. From Equations 5.44 and 5.39,



Consequently, we obtain ,;,_; »;_1. Comparing Equations 5.40 and 5.46, we arrive at

—f 2 2 _ 2 .
-1 m—2=C 1 t 2 +1+N 3, )= 31 M-t

In the preceding equation, we can use the derived expression for ,,_; ,,_; to substitute ,,_; for

-1, and we can use Equation 5.39 to substitute ,,_; for 2, ,. Doing so results in an equation
with  being the only unknown. Solving the resulting equation gives a formula for ,; ;. Next we
can derive ;. from ( a1 am-1)= mo1, w1 from Equation 5.46, and 2, , from Equation 5.39.
Given the expressions for 5, 1; a-1; a1 and 2, , we can now check whether Equation 5.47 holds
or not. If it doesn’t, we modify our initial value of ,;_, until it holds. We repeat the procedure to
derive ,;_3;:; o. If the derived  is di erent from the initial given value, we adjust ,,_; and
repeat the whole procedure until the derived ( equals to the initial given value.

B Proofs for Section 3

Here, we prove the general case N > 1 for all corollaries and theorem rather than the special case
N = 2, so the proof of Theorem 5.2 is covered.

Proof of Lemma 3.1 Recall that each dz’ (1 < i < N) is a non-standard Brownian motion and that
dz’ and dz’ are independent for i # j. Hence, by Equation 3.4, 3", ;-5 dz’ is a standard Brownian
motion with instantaneous variance dt. The correctness of the lemma then follows from the Kalman-
Bucy Iter (see, e.g., Kallianpur (1980)). O

Proof of Lemma 3.2 Note that U7(0) = (N — 1) s’ and that 3°,; z'(t) is a Brownian motion with
instantaneous variance equal to %dt. On the other hand, Equation A.1 implies (0) = var(v|F7(0))
(since there is no trade at time 0, it makes no di erence whether the variance is taken before or after
disclosure at time 0). Now, the correctness of the lemma follows from the Kalman-Bucy Iter (see,
e.g., Kallianpur (1980)). O

Proof of Lemma 3.3 Consider an arbitrary informed trader j (1 < j < N). If indeed all other
traders follow Strategy 3.3, then from Equations 3.12 and 3.13,

A N A N A A
J 2 idt = i i .
du +<N—1 )Udt N1 (E dz* + Esdt).

i#j i

Together with Equation 3.11, this immediately implies
d /1, . N , .
_ _ 7 - (2 7 .
dt( U) N 1 (§d2+ stt).
i#£] i#£]
Since trader j believes all other traders follow Strategy 3.3, he expects dz’ + s‘dt = dx’ — f(t)dt.
Hence, he uses the following rule to update his U7,

d /1, \_ N l. _
dt(u)_N_l ;(dx—f(t)dt).

32



Therefore,

ui(t)
®,
RO O+ OFg— / (® g(dx — f(t)dt) (B.1)
(t) i
(0)('\' -1s (t)i / (t) ;(dx — f(t)dt): (B.2)

Note that Equation B.1 can also be directly derived by the fact that (under our normality assumption)
the conditional expectation of the asset value is the precision-weighted average of all observable signals.

By exactly the same reasoning, the market maker, who believes that all informed traders follow
Strategy 3.3, has his estimate of asset value as

V) =0+ (b) / ® Y (dx — Fo)d): (B.3)

1<i<N

Summing up Equation B.2 over all j, we obtain

Ui = O —(N=-1) v+ (t)N/ (t) > (dx' — f(t)dt)
1<j<N (0) 1<i<N
IPNEORY (t)
(N—-1)—= (0) +N (t)v (t) (by Equation B.3): (B.4)
Now the correctness of Equation 3.15 reduces to the following
® IO O)
(0)(N 1) +1=N o (B.5)

This equality can be directly veri ed by Equations 3.8 and 3.11.

Proof of Lemma 3.4 By Eqaution B.2, V’ consists of two components.!! The rst component is
based on private-information (i.e., it depends on s’) and is equal to

® .
(1 o™ ”)

The second component is purely based on public information. Hence, the private-information compo-
nent in dx’ (i.e., the component dependent on s?) is equal to
(¥ :
— {1+ N -1 7
N ( HOM .
where the equality follows from Equation B.5 (which is purely a mathematical identity). This proves

that Stratergy 3.16 satis es Equation 3.3. The above arguments also show that if a strategy satis es
Equation 3.3 and its deterministic part can be decomposed into a public- information component

\We can use this equation here since it is derived from merely assuming that each informed trader believes all other
informed traders follow Strategy 3.3.
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and another component involving V7, then the latter component must be of the form speci ed in
Equation 3.16.
On the other hand, if all informed traders indeed follow Strategy 3.16, then by Lemma 3.1,

dv)y = (1) )| > dz'+ (v —V(t)dt]: (B.6)
1<i<N

However, the market maker does not observe v directly. Hence, believing that all informed traders

follow Strategy 3.16, he can use Equation 3.15 to substitute the v — V (t) term in the above equation

and obtain

dv ()= (t) (t) [ 3 dzi+ N > (Vi -V ) dt] : (B.7)
1<i<N 1<i<N

Since we have already proved that each informed trader i’s information-based component has the form
of ﬁég)vi(t), the above equation is consistent with Equation 3.1 if and only if the public- information
component of each informed trader i’s deterministic trade is equal to ]\%Q)V (t). Hence, we conclude
that Strategy 3.16 is the unique trading strategy with the claimed properties.

Now, comparing Equations 3.1 and B.7, we immediately obtain Equation 3.17. Finally, given that
Strategy 3.16 supports the pricing rule in Equation 3.1 with  speci ed in Equation 3.17, a direct
application of the Kalman-Bucy Iter (see, e.g., Kallianpur (1980)) proves that Strategy 3.16 also

supports the pricing rule in Equation 3.2 with  speci ed in Equation 3.18. 0O

Proof of Lemma 3.5 Since we will focus on an arbitrary informed trader j (1 < j < N) throughout
this proof, we use dx(t) as a shorthand for dx’(s’;V7;V#’). Also, we rewrite V (t) and P (t) as V *(t)
and P*(t), respectively, to emphasize that trading strategy x a ects the processes V and P. Using
Expression 3.22 and the law of iterated expectations, we know that the objective of trader j is to
maximize

E /01 (VI(t) — P(t+dt)) dx(t)

under the dynamics of the state variables V7, V2, and P?.
From Equation 3.13, V/ follows the following dynamics

dvi(e) = ,/N'\ll ) (OdWI(D): (B.8)

On the other hand, the instantaneous order submitted by all traders i # j sum to

;N(Vi—w)dHZdzi
1] i#]
— [ (v_vx)_N(vf—vw)] dt+ > dz' (by Equation 3.15)
i#]
N -1

= waj + <1 — Nl> (V7 —Vv®)dt (by Lemma 3.2)
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Hence, by the pricing rule in Equation 3.1,

Ve = (Odx() + (t),/NN_ldwj(t)
1

o Ji _\JzT .
+ (1) ) <1 N (t)> (VI - V(@) dt: (B.9)

The optimization problem is a Markovian stochastic control problem with state variables (V7 (t); V Z(t); P=(t)
Let J(t;s;V7;V?) denote a candidate for the following value function

sup E /t 1 (V7(u) — P*(u+ du)) dx(u)
= supE /t 1 (Vi(u) = Vo) — (u)dx(u)) dx(u);

where the expectation is conditioned on F7(t) and the equality follows from Equation 3.2. Note that we
have dropped \— (dz°(u)+3,.; dx’)" in the parentheses on the right-hand side of the above equation.
All of the droped terms there are either a random variable uncorrelated with dx‘ or a deterministic
term of an order at least dt, and therefore they do not contribute to the expectation.

The Bellman equation for this control problem is

0 = max,E} va ERVE . dx) dx + J,dt + Jy.dV * + Iy, dV 7+
+;JVW @V *)? + Jyy;dVdvy + ;wa (dv )% (B.10)
Here, J,;J,, are the rst- and second-order partial derivatives of J with respect to x and X;y. In-
tuitively, the Bellman equation states that the over x of the drift of J plus the instantaneous pro t
(V7 —P®)x equals zero; i.e., the expected decline in future pro t should be exactly o set by the realized
current pro t.

Note that the right-hand side of the above Bellman equation depends on x through a quadratic
function of dx. In particular, since dx only appears in the dynamics of dV * but not in the dynamics of
dVv 7, the only terms involving dx (except those of higher orders) on the right-hand side of the Bellman
equation are: (— + %Jvzvz )(dx)? and ( Jy- +V 7 —V®)dx. For trader j to follow a random strategy,
he must be indi erent across the various possible orders induced by the random strategy; i.e., the
coe cient of dx and (dx)? must be zero. Reasoning from the linear term, we have

Jyz = (B.11)
Reasoning from the quadratic term, we have %JWW 2= | Then, applying Equation B.11, we obtain
=3 (B.12)

which establishes Equation 3.24. Recall that our postulated equilibrium strategy in Equation 3.16
includes a stochastic term in trader j’s order ow. For trader j to follow such a random strategy, he
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must be indi erent across the various possible orders induced by the random strategy. The above two
equations serves to ensure that trader j will be indeed indi erent.

From Equations B.12, 3.18, and 3.17, we immediately know that var(dz°(t)) +>, ;< var(dz'(t)) =
23" i<y Var(dz‘(t)). This con rms our earlier claim (see Equation 3.5) that Equation 3.4 leads to

var(dz’(t)) = dt: (B.13)

Using Equations B.8, B.9, B.11, and B.12, we can simplify Equation B.10 to

0 = J,+Jv 1—— (VI —V"®
¢+ Jy ( N( = )>( )
1 N -1 1 , N

+ EJvzvz QT +vavj + EJVJ'VJ' 2 m: (B-14)

By taking the derivatives of Equation B.14 with respect to V* and using Equations B.11 and B.12 to
simplify terms, we arrive at

o= () e [ () e -v);

It is straightforward to show that this is equivalent to Equation 3.23. Since Bellman equation is a
necessary condition for the optimality of the trading strategy for trader i, the above arguments prove
the necessity of Equation 3.23.

To prove the necessary and su cient conditions for the optimality of the trading strategy, we can
assume in the rest of the proof that Equations 3.23 and 3.24 hold, and we only need to show that
Equation 3.25 is necessary and su cient for the optimality of trader j’s strategy.

First, straightforward calculations show that the following function J does satisfy the Bellman
equation as speci ed in Equations B.11, B.12, and B.14.

1
2 (1)
Reasoning with the above J as in Back (1992), we can show that an optimal strategy should not

include discrete orders (this is due to the convexity of J as a function of V’/ and V*?). Given any
trading strategy x with continuous orders, we can apply Ito’s lemma to obtain

J(t;s; VI ve) =

s e N—1 11 N (u) W)*,
A /t (u)<(u)—N_1 )du. (B.15)

J(L;s;VI(1-);VE(1-)) — I(0;8; VI (0); V °(0))
1 X . .
~ / <Jtdt + JpedV® + JysdV + ;Jvzvz(dv "Y2 4 JyysdV AV 7 + ;wa (dVJ)2>
0

. 1 ‘ 1
3(0; s;V7(0); V*(0)) + / g(t)dW (t) — / (Vi —V®— dx)dx
0 0
for some function g that depends on time t only and it’s easy to verify

1
E [/ g(t)2dt} < o0;
0
where the last equality holds since J satis es Equations B.11, B.12, and B.14. Thus,

E (/Ol(vj VN dx)dx) = J(0;5;V(0):V*(0)) — EQI(L;s:VI(1-): V*(1-))):
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By the de nition of J, —E(J(1;s;V/(1-);V*(1-))) < 0. Thus from the preceding equality, we see
that the proposed trading strategy is optimal if and only if J(1;s;V/(1-);V®(1-)) =0, a.s., which is
equivalent to
1Itgqv“"’(t) —V/()=0as: or !g} (t) = +oc: (B.16)
To complete the correctness proof that Equations 3.23 and 3.25 are indeed necessary and su cient.
We are left to prove that Equations B.16 and 3.25 are equivalent. First, if lim,; (t) = 0, then
lim,_,; V*(t) is a precise estimate of v and so V/(t) should also approach to v. On the other hand, by
Lemma 3.3, we know that lim,_,; V #(t) — V7(t) = 0 a:s: imply:

H x _\/JJ — H - x
lim ;[V (1) — V(1] ImN (v - V)
=0
This must imply lim,_; (t) =0, otherwise we have lim,_,; N (t) # 0 (by Equation (B.5)), lim;_,; v —
V* £ 0, a contradiction.
Finally, to complete the proof, note that the above argument implies that the expected trading
pro t for Strategy 3.16
E(J(0;V7(0);V*(0)))

S R o, N—1 11 N (u) W), .
= 7oV OO [ @-NR)

as claimed. O

Proof of Theorem 3.1 This proof consists of two parts: (1) assuming as given, we rst prove the
formulae for all other quantities; (2) then we prove that exists if and only if < 1or N =1 and
that when exists it is uniquely determined by the formula given in the lemma.

First, we prove the formulae for all the other formulae assuming the correctness of the formula for

. The formula for (t) as a function of (t) follows directly from Equation 3.8. The formula for (t)

follows from the fact (t) = (t) (t) (see Lemma 3.4), and hence the formula for (t) follows from
the fact that (t) = 3 ().

Since the market maker makes no pro t, the expected pro t of all the informed traders is equal to
the loss of liquidity traders, which is equal to

/ " ()d2(0)dz°(t) = / "
0 0

By symmetry, each informed trader’s pro tis + of the total expected pro ts of all informed traders,
and hence it is equal to % J3 (t)dt, as claimed. To prove the correctness of Expression 5.55, note that

NI N EFRPN -
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1 1- 1-B Y
= ZJ (0)< )(3N_4)((1—B)t+8) s

where the last equality follows from the formula for  in Theorem 3.1. Algebraic calculations then
show that the integral of the last expression with respect to t from 0 to 1 is equal to Expression 5.55
times N, as desired.!?

We have thus proved the correctness of all the formulae except the one for . Moreover, this means
that the existence, non-existence, or uniqueness of the equilibrium is equivalent to the existence, non-
existence, or uniqueness of (t), respectively. So in what follows, we only need to derive the formulae
for (t) or prove its non-existence. We will do so by solving the di erential Equation 3.23 with
boundary condition 3.25.

From Equation 3.23, we have

$0)-8 (1)

where we have used Equation 3.8 to derive the last equality. Thus, Equation 3.23 implies

! 2
On the other hand, the de nitions of (t) and (t) (Equations 3.8 and 3.11) implies
N-11 1 _ 1 1 _ A,
N ® ® ¢-)(@©O (@O N
where N
A=— ——
1-)
is a constant. Substituting (t) for (t) in Equation B.17, we get
! 2 2(N -1
3 N (—A-5)N
In what follows, we let = % Using the fact fﬁt(%) = 2, we can rewrite the preceding di erential
equation as 4
" 4N\ ' 4N-1)'
= +(2——)—+ —-—"7 .
0=— (2 N) CA- N (B.18)
Inthecase N >1and =1, A = oo, and hence the above equation implies'?

0= g log (*4)]:

12The absolute-value operator is needed for the case p < 0, which implies that the term inside the absolute value

operator is negative. Also, we remark that the expected-pro t formula can be alternatively derived by taking expectation

(at time 0) of Expression 3.26.
13To be completely formal and to avoid dividing by 0, we should have directly derived the desired equation below.

But this is a straightforward exercise by using the argument for obtaining Equation B.18.
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Thus,

4
' 2=~ = C, for some constant C, > 0;

which in turns implies

o

1

(¥
But when N > 1, there is no constants C; = Cy(3 — 4=N) > 0 and C, which can make the above

(t) satisfy either (1) = 0 or lim,_; (t) = /— ’(1) = +oo, as required by Equation 3.25. This
completes the proof that a linear equilibrium does not exist for N >1and =1.

In the rest of the proof, we assume either # 1 or N = 1. Under these assumptions, we prove that
Equation B.18 has a unique solution of (t) as described in the theorem. Now, the only possible case
with =1 happens is when N = 1. But when N =1, there is no competing informed traders, and
is irrelevant. Without loss of generality, we make the additional assumption = 1. This will ensure a

nite A in the rest of the proof.

By Equation B.18,

t) = = (C,t+ Cy)* ~ for some constants C, and C: (B.19)

0= & (4o )

Hence,
4 4(N_1)
' 22~ ( +A)” ¥ = C;s for some constant Cs;

which in turns implies

41 N)

()>~( +A) ¥ /=, for some constant C,: (B.20)

In the case of =0, we have A = 0. Hence, the above equation is equivalent to 2 ’ = C,, which

implies that = 1= s linear in t. Hence, the desired formula for  follows immediately from the
boundary condition (1) =0.
For the case of # 0, we can make a change of variable as = A;~, the above equation becomes
r’~vr' = Cy:

From this and the boundary condition on r(0) and r(1), we obtain

1 1\ 5
A (H)+1 (A (1)+1> a

Taking derivatives with respect to t in the above equation, we know that ‘(1) is bounded. Hence,
from the proved formula (t) =,/— ’(t), we know that lim,_,; is nite. Hence, from Equation 3.25,
we must have (1) =0. Plugging (1) = 0 into Equation B.21, we immediately arrive at the claimed
formula for (t). O

1

t+ B) i (B.21)
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C Proofs for Section 5

Proof of Theorem 5.1 This is covered in the proof of Theorem 2.1. [
Proof of Thereom 5.2 This is covered in the proof of Theorem 3.1. [
Proof of Theorem 5.3 The proof is in the Appendix of Back, Cao, and Willard (2000).

Proof of Corollary 5.1 We rst prove corollaries in section 5 and then corollaries in section 4 for
most of them are just special case to corollary 5.1.
(i) From equations B.12, 3.18, 3.17 and B.13, we have 3, ;. var(dz‘(t)) = var(dz’(t)), which
means informed investors contribute half of the total trading volume 3=,y var(dz‘(t)) + var(dz°(t)).
(i) From equation B.19, when N = 1, we have (t) = C;t + C, for some constants C;;C,.
And only C; = — 4;Cy =  satis es the initial condition and the condition lim,,; (t) = 0 or
lim,_,; " (t) = +o0, required by Equation 3.25. Thus, we show

M= ©Ow-1="(:

and it’s trivial to show (t) = “(t); (1) = "(t)=2.
(ii) Without loss of generality, we x , =1. De ne

ay = 3—4=N>1;:N>2 (C.)
byveg = 2(1— )=(N ) (C.2)
1 N -1
= — - > .
NN TP )
PoN-y _ 1% 1oy
= 24 2 1+ ];[:13 - 1+N21 (C.4)
N 1+ 2 “a N 2 N
B = <1+N1_> = 1+N/ 1_1&21—1 _<N—1> (C5)
Write (t) as
1+ 2 .
(t) = (0N < 1| ((1-B)Xt+B) N —1) (C.6)
1- 1\?i1
(1-B)t+B) %~ —1
(N=-1)=2-1 (€7
_ (@-BXt+B) tav -1
= B~ 1 (C.8)

and its derivative with respect to t is:

e @®_ (O@-B)YA-B)t+B)y v

ot ay(B-lu~ —1)
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Di erentiating both sides of equation 5.57 gives

@ @Et) = (MO (M (1)) bSO/

Ast— 1, both (t) and " (t) goes to 0. So we using L’Hospital’s Rule to calculate the following limit:

lim D = i & (O30 (C.9)
t—1 (t) t—>1@ (t):@t

— (0@ -B)(1 - B)t+B) "'arzlay(B~'a ¥ —1)]

= !EH o (A(O))l_uN(A(t))l'f‘aNequai(O)/i(t) (C].O)
_ OCO)xY1-B),. (A1-B)yt+B)y "y -1

= aN(Bfl/u N — 1) t—1 (A(t))1+a NebNd;i:(O)/i:(t) (Cll)
=0 (C.12)

Because the exponential function e®¥+=(©)/2() grows much faster than the polynomial function (1=" (t))*% ~
as 1="(t) goes to co. So the denominator (" (t))1* ¥ebxs=(0)/5(1) goes to oo and at the same time the
numerator ((1 — B)t+ B)~'~"%~ — 1 goes to 0 as time t — 1, which proves the last equation.

Similarly, by L’Hospital’s Rule, we have following result

im-9 = jim Y= (C.13)
t—1 (t) t—1 _/\0:/\
o:/\o
= lm (©14
lim =
= —— Y 2 (C.15)
Ilmt%l =
lim =
= — =V " (By L’Hospital’s Rule) (C.16)
lim;,, ="
= lim( =" (C.17)
t—1
= oo (By Equation C.12) (C.18)
(iv)
= 2=/ — 0
lim—s = Ilim (C.19)
t—1 1: t—1 1: _/\0
=l 2 C.20
o tﬂ;q / 0:/\0 ( . )
= oo (By Equation C.12) (C.21)

(v) Givenay > 1, B —1and B~'.~ — 1 take di erent signs, so we have

e ®_ OB-1)(EA-Bt+B)'uy

<
at an(B 1o — 1) °
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Taking derivative to (t) with B

@@E(at) - (O)(SV(_BE_?/Z: > )1):1/” [(1-B7 M- +B ey — (=B +1- 1)

Taking derivative to [(1 — B~ 1% ~)(1 —t) + B~ 1"~ — (t=B + 1 — t)'*+14 ~] with respect to B
gives (1=ay + 1)B 2" Mt[(t=B + 1 — t)'% ¥ — 1], which is larger than 0 if B > 1 and smaller than 0 if
B<1 So[(1-B ' "% —-t)+B 1~ — (t=B + 1 — t)'+/4~] reaches its minimum 0 at B = 1,
so we have @ (t)=@B > 0 for all B > 0.

We express (t) as function of B rather than or 2

€

_ o1 |@-B)d-B)yt+B)
® = Vv '=2= 4 (B 1 D) (C.22)
1 [a-B)B 11~
0 = zm\/ B-1,~ —1 (C.23)
_ 1 1-B
@ = 2@y | B-v —1 (C.24)
Taking derivative to (0) and (1) with B gives:
@ (0) _ (1-B)B%~+ay(B'%ar-1)
B 8 (0)B2(1 — B/, ~)? (C.25)
x (1-B)BY%~ +ay(B'Y 1) (C.26)
1 B/, ~n—1
@@I(B) = s mA_Bypl B +ayBTL] (C.27)
x 1—(1+ay)B +ayB!tlaw (C.28)

The derivative of (1 —B)BY.~ +ay (B ¥ — 1) with respect to B is (1 — 1=ay)(1 — B)B'. ¥~1, which
is larger than 0 if B < 1 and smaller than 0 if B > 1, so @ (0)=@B reaches its maximum 0 at B =1,
ie, @ (0)=6B < 0. 2[1—(1+ay)B+ayB'*% ], the derivative of 1 — (1 +ay)B +ayB'*'~ with
respect to B, is larger than 0 if B > 1 and smaller than 0 if B <1, so %g) reaches its minimum 0 at
B=1ie,® (1)=0B > 0.

e _ o Het_ - "

ot~ 2@® 2 () (C.29)
_ (1+1may)(1 - B)((1 - B)t+B)"" "t~
- 2 (Han(l— B, ) (C.30)
oc 1=(1-B'%") (C.31)

So, (t) is increasing in t when B < 1 and decreasing in t when B > 1.
(vi) When 2 =(N —1) 2 we have

€

®O= O0-9
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and hence 1
=4 O0)=(1-1),;, = E; =1

and the pro ts of informed traders are

/01 (t)dt=/01;dt=;

Therefore, market e ciency, market liquidity, and pro t are the same as if there exists a monopolistic
informed investor with all the signals in the market. And from equation B.5 and equation 40 (i.e.,
() =(1+(N-1) (t))=N) in BCW, we know (t) = (t)= (0) and hence the conditional correlation
between private signals (t) remains 0 throughout the trading period.
When 2# (N —1) 2, we rst have

N@O=1+N-1) - o4

©)
for (t) < (t) — 0 as time t goes to 1. Further,

_®

M} 1t - m}— '(t) (By L’Hospital’s Rule) (C.32)

= U= ) OWQ=8) g gyrv gyt (C.33)
Nay t—1
_ (@-) (Oa-B.)
= Nay (C.34)
= Sy (C.35)
from here we also have lim;_,; O(t) = -S,.

. IERYA ()
Mrlm mH@a-vy = !mm (C.36)

_ Iimt%l VT 0(t)
Mo (0=0 10 (C37)
NS

= 5 (C.38)

= 1:\/§D (C.39)

lim () = limY— ® (C.40)

t—1 t—1 2
— Iimt—>l AV O(t) (C 41)
5 .
= ¢2§° (C.42)



We can express the pro t (0) in B rather than ,

0y = .| & (0) (1-B(,n/2)2
O=\aNn—2ra—B)B % - 1)

Taking derivative with B gives
@ (0) @ (1 - BO-1,~)/2)?
B > (1—-B)B 1~ — 1)
By 7(1—B? %v)(1— B2t 7y)

- - — ﬁ_% — N _
B av(l — B)2(1 — Bl n)2 [(B 1B ay(B 1)| (C.44)

(C.43)

x ay(BY%N —1)— (B —1)B%~ 2 (C.45)

Again taking derivative to ay(B%~ — 1) — (B — 1)B?azv ? with B gives Box 2[ (2 +5)B+
By '3 4+ (2 1)]. The derivative of the second term —(2 + 1B+ By 2 + (2 —3) is
(2 . 2)(B2“N P 1). Given ay > 1, Bav 2 —1is negatlve if B > 1 and positive |f B <150

aN(Bl/ N —-1)—(B - 1)BQGN 3 reaches its maximum 0 at B = 1, which means ay(BY%~y —1)— (B —
1

1)B7~ "2 decreases in B and equals to 0 at B = 1. So, 270) is positive when B < 1 and negative

when B > 1, i.e., (0) reaches its maximum at B =1. O

Proofs of Corollary 5.2 When one of the N informed traders (without loss of generality, assume she
is the N-th trader) leaves the market, the remaining N — 1 traders in aggregate don’t know the true
value of the asset v. Instead, the variable which the N — 1 informed traders and the market maker are
interested of is the informed traders’ expectation of v:
..... _ N(N-1) H
Vnon—1 = Ev|si;iiiisyoa] = (N_1)2+ 2= 2 > s

€ v o1=1

Correspondingly, the expected pro ts each of the remaining N — 1 informed traders obtains

(N 1)) 2

1 BJ(N 1) 4

1— 3(N-1)—4 ‘ N=N=1
= —1(0 C.46
here, (C.47)

N _ 1 2 2
non-1(0) = varfvyy] = (N (_ 1)24)_ 52 2 (C.48)
N _ 1 2 4
— %; 2 5 o0 (C.49)
1_ 3—4/(N—1) N 2 3—4/(N-1)

BN—>N—1 = (1 T (N — 1) > ((N — 1)2 2 T ?) (C50)
— N3YW=D 2 0 (C.51)

Considering the limiting behaviour of the ratio of y and y_y_; when 2 — oo

2
lim —~ (C.52)

2
TR0 NN-1
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lim,. .. 2
= lim Moo N (C.53)

AT Tim e s
© (77) (2ixtn) 4NN - 2)%)

= lim oy C.54
02500 (N—Uilg)% (PTP) (%) (1- N172/(N71))2 =(4(N — 1)2((N — 1) — 2)2) ( )
(BN — 4)(N — 1)(N — 3)?(1 — N3-4/(N=1)) (C.55)
(BN — 7)N2(N — 2)2(1 — N1-2/(N-1))2 '
> 1; N>4 (C.56)
the above expression in N decreases to 1 as N goes to oc.
For the case of N = 3, following similar steps, we get
2
lim —2 (C.57)
02—00 3 9
0) (:=2) (=25 ) =36
T ( = ) ) ; (C.58)
wivoo 42 (122) (log(3))
40
BECIO% (€59)
= 368>1 (C.60)

So, we have n= yny_1>1as 2grows to oo for all N > 3, which means there exist a large enough
csuchthat y > y.y_iforall > .. Thecase of N =2 is covered in the proof of Corollary 4.8.
Writing x and j; in 2 gives us:

o mJ (- =)y / L (C.61)
-1)/ 2,/1+ 2

l = = |
a?@oo NToM ozl—r>noo 2(N-2) \ (1 - (%)3—4/1\/)(%
o2 _ o2
RNy .
2(N — 2) o250 (%)3/2—2/1\/ '
VB —4=N)(N — 1)
- C.63
N—2 (C.63)

\/(3 —4=N)(N — 1)=N — 2 decrease in N and equals 1:8257 at N = 3, 1:2245 at N = 4, and 0:9888
at N = 5. So, for N = 3; 4, there exists /. such that for > ", » > ;. However, for cases N > 5,
we always have ,, > y at the limitof . — oo, and our numerical results always show that the ratio
ofy= n isincreasing in ., which means ,; > , holds for all . when N > 5. O

D Proofs for Section 4

Proofs of Corollary 4.1 This is a special case of part (i) in Corollary (5.1). O

Proofs of Corollary 4.2 This is a special case of part (ii) in Corollary (5.1). O
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Proof of Corollary 4.3 It’s straightforward to verify that (t) is increasing in t and decreasing in
Zas (=1 (1-9]. O

Proof of Corollary 4.4 This is a special case of part (v) in Corollary (5.1). O

Proofs of Corollary 4.6
The ratio of market liquidity can be decomposed into three components:

020 e

= X =
="® 1 @® ®
As t approaches 1, “(t)= (t) goes to zero at the order of v/1 —t but " (t)= (t) goes to in nity at the
order of 1=[(1 — t) In(1 — t)]. Thus, we must have

im= O —
t—1 1: (‘t)
When < ,, we have
" 2+ =(1-1)
)  2- 2inl-Y
1
>
- Q-1 -In(1-1)
S Ve .
- 2y1-t
where the last inequality holds because /1 — t[1 — In(1 — t)] is maximized at t = 1 — 1=e. It follows
that . /B
= e
—~>2xV1-—-t = > 1.
1=~ = ‘o=t Ve
and ) .
s n =N .
0) /O (t)dt < /0 (t)dt = 70):
a

Proofs of Corollary 4.7
+ 2t=(1-1)

=m_2_ "®_ " _ 2
1:A(t)_IXTXE_2XV1_tX 2= 2l —1)

When t > 3=4, 2,/ — t < 1. Moreover, as . increases, (t)=""(t) goes to 1 since informed investors
have very imprecise signals and thus are reluctant to trade, which causes very little information to be

revealed to the market. As a result, market is less liquid in the presence of public disclosure for large
«» Which means there existsa > , such that 1= (t) < 1="(t) for > .and t> 3=4.
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"O) ot ACZ—1)=log( D)

© T b7 o oY
1a( 2~ 1)=log( 2)
< /0 N (D.2)
8( 2 1)
Tog( 2) (®:3)

So, we have lim,2_,., *(0)= (0) = 0, which by the de nition of limit means there exists a large enough
> ,such that for > *, (0)=~(0)>1. O

€ 1

Proof of Corollary 4.8 We have

oy (@ Zlog( 3)/ 1
v 4D /) fir

y 2+ 2)log( [) (D.5)

-1

(D.4)

Taking derivative to p= j; with respect to 2 gives

@ p_2(/-1-3(2+log( ?)
0 8( 2-1)%/ 21+ )

Considering the function 2(u? — 1) — 3(u + 1) log(u), its rst derivative with respect to u is

™o
S ‘U

2(u? — 1) — 3(u+ 1) log(u)

2 = 4u— (3+1=u) — 3logu (D.6)
> 4u—4u—B3+1=u)-3u-—-1) (D.7)
= u-1=u>0u>1: (D.8)

and its value is 0 at u = 1, which means @(;—E):@ 2>0forall 2> 1. And also we have the ratio of
p= a grows to oo as 2 goes to oo,

-2
lim 7D: lim M:OO

o2—00 02—00 4

there is a large enough ”~, such that for .> ", we have p> . O
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Figure 1: Figure 1.A: Trading intensity as a function of time for 2 = 0:875 and N = 2. The solid
line is for the case with disclosure and the dashed line is for the case without disclosure. Figure 1. B:

Ratio of with and without disclosure as a function of t for 2 =0:875 and N = 2;3;4;5.
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Figure 2: Figure 2A: Residual uncertainty
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2=0:875and N = 2. The
solid line is for the case with disclosure and the dashed line is for the case without disclosure. Figure

2=0:875and N = 2;3;4:5.
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Figure 3: Figure 3A:Market depth 1= as a function of time for 2? = 0:875 and N = 2. The solid
line is for the case with disclosure and the dashed line is for the case without disclosure. Figure 3B:
2=0:875and N = 2;3;4;5.
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Figure 4: The ratio of market depth 1= with disclosure and without disclosure as a function of

log( 2);tfor N = 2.

53



Figure 5: The ratio of informed traders’ total pro ts (0) with disclosure and without disclosure as a
function of log( 2) for N =2;3;4;5.
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Figure 6: Trading intensity as a function of log( 2);t for N = 2 with disclosure
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Figure 7: Residual uncertainty as a function of log( 2);t for N = 2 with disclosure
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Figure 8: Market depth 1= as a function of log( 2);t for N = 2 with disclosure.
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Profit

Figure 9: Informed Traders’ expected pro t (0) as a function of log( 2) for N = 2;3;4;5 with
disclosure.
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Figure 10: The ratio of informed traders’ total pro ts , with many competitive traders and ,; with

a monopolistic trader as a function of log( %) for N = 2;3;4;5.
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