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Abstract

We develop a model of banking industry dynamics to study the quantitative impact
of capital requirements on bank risk taking, commercial bank failure, and market
structure. We propose a market structure where big, dominant banks interact with
small, competitive fringe banks. Banks accumulate securities like Treasury bills and
undertake short-term borrowing when there are cash flow shortfalls. A nontrivial size
distribution of banks arises out of endogenous entry and exit, as well as banks’ buffer
stocks of securities. We test the model using business cycle properties and the bank
lending channel across banks of different sizes studied by Kashyap and Stein (2000). We
find that a rise in capital requirements from 4% to 6% leads to a substantial reduction
in exit rates of small banks and a more concentrated industry. Aggregate loan supply
falls and interest rates rise by 50 basis points. The lower exit rate causes the tax/output
rate necessary to fund deposit insurance to drop in half. Higher interest rates, however,
induce higher loan delinquencies as well as a lower level of intermediated output.
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1 Introduction

The banking literature has focused on two main functions of bank capital. First, because
of limited liability and deposit insurance, banks have an incentive to engage in risk shifting.
Requiring banks to hold a minimum ratio of capital to assets reduces the banks’ incentive
to take risk. Second, bank capital acts like a buffer that may offset losses. In this paper we
develop a structural model of banking industry dynamics to answer the following quantitative
question: How much does an increase in capital requirements affect failure rates, interest
rates, and market shares of large and small banks?

We endogenized market structure in an earlier paper (Corbae and D’Erasmo [13]), but
limited the asset side of the bank balance sheet to loans and the liabilities side to deposits
and equity. While loans and deposits are clearly the largest components of each side of
the balance sheet of U.S. banks, this simplification does not admit ways for banks to insure
themselves at a cost through holdings of securities like T-bills and borrowing in the interbank
market to cover deposit shortfalls. In this paper, we extend the portfolio of bank assets in the
above direction. Further we assume that banks are randomly matched with depositors and
that these matches follow a Markov process that is independently distributed across banks.
Thus, we add fluctuations in deposits (which we term “liquidity shocks”) to the model of
the first paper.

We assume banks have limited liability. At the end of the period, banks may choose
to exit in the event of cash shortfalls if their charter value is not sufficiently valuable. If a
bank’s charter value is sufficiently valuable, banks can use their stock of net securities as
a buffer and borrow (whenever possible) to avoid being liquidated or issuing “expensive”
equity. Thus, the extension allows us to consider banks undertaking precautionary savings
in the face of idiosyncratic shocks as in a household income fluctuations problem, but with
a strategic twist, since here, big banks have market power.

We test our model in two dimensions. First, in Section 6.2, we look at the business cycle
implications of the model and compare them with those from the data to show that the
model predictions are in line with the empirical evidence. Second, we test the model via a
policy experiment in Section 6.3 that considers the effects of “monetary” policy changes on
the bank balance sheet and lending decisions. In an important paper, Kashyap and Stein
[27] studied whether the impact of Fed policy on lending behavior is stronger for banks with
less liquid balance sheets (where balance sheet strength is measured as the ratio of securities
plus federal funds sold to total assets). The mechanism they test relies on the idea that
(p. 410) “banks with large values of this ratio should be better able to buffer their lending
activity against shocks in the availability of external finance, by drawing on their stock of
liquid assets.” One of their measures of monetary policy is the federal funds rate. They find
strong evidence of an effect for small banks (those in the bottom 95% of the distribution).
In this section, we conduct a similar exercise by running a set of two stage regressions on a
pseudo panel of banks from our model and find that the results are largely consistent with
the empirical evidence presented in Kashyap and Stein [27].1

1Our data, like that of Kashyap and Stein, is not rich enough to study heterogeneity at the matched
lender/borrower lending level. In an important new empirical paper, Jimenez et al. [26] use an exhaustive
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A benefit of our structural framework is that we can conduct policy counterfactuals.
Our set of policy experiments considers the effects of regulatory changes. In particular, in
Subsection 7.1 we study a 50% rise in capital requirements (from 4% to 6%) motivated by
the changes recommended by Basel III. FDIC Rules and Regulations (Part 325) establishes
the criteria and standards to calculate capital requirements and adequacy (see DSC Risk



fringe banks.
Basel III also calls for banks to maintain a “countercyclical” capital buffer of up to 2.5%

of risk-based Tier 1 capital. As explained in BIS [8] the aim of the “countercyclical” buffer
is to use a buffer of capital to protect the banking sector from periods of excess aggregate
credit growth and potential future losses. According to Basel III, a buffer of 2.5% will be
in place only during periods of credit expansion.3 In Subsection 7.4 we run a counterfactual
where the capital requirement increases by 2% during periods of economic expansion, so the
capital requirement fluctuates between 6% and 8%.

The computation of this model is a nontrivial task. In an environment with aggregate
shocks, all equilibrium objects, such as value functions and prices, are a function of the
distribution of banks. The distribution of banks is an infinite dimensional object and it is
computationally infeasible to include it as a state variable. Thus, we solve the model using
an extension of the algorithm proposed by Krusell and Smith [28] or Ifrach and Weintraub
[21] adapted to this environment. This entails approximating the distribution of banks by
a finite number of moments. We use mean asset and deposit levels of fringe banks jointly
with the asset level of the big bank since the dominant bank is an important player in
the loan market. Furthermore, when making loan decisions, the big bank needs to take
into account how changes in its behavior affect the total loan supply of fringe banks. This
reaction function also depends on the industry distribution. For the same reasons as stated
above, in the reaction function we approximate the behavior of the fringe segment of the
market with the dynamic decision rules (including entry and exit) of the “average” fringe
bank, i.e., a fringe bank that holds the mean asset and deposit levels.4

Our paper is related to the following literature. Van Den Heuvel [33] was one of the first
quantitative general equilibrium models to study the welfare impact of capital requirements
with perfect competition. In a similar environment, Aliaga-Diaz and Olivero [1] analyze
whether capital requirements can amplify business cycles. Also in a competitive environ-
ment, Repullo and Suarez [31] compare the relative performance of several capital regulation





Before turning to a set of new facts this paper is intended to study, we first present some
of the main balance sheet items of commercial banks (as a fraction of total assets) by bank
size for the years 2000 and 2010.9

Table 1: Balance Sheet Key Components

Fraction of Total Assets (%) 2000 2010

Bottom 99% Top 1% Bottom 99% Top 1%

Cash/Fed Funds sold 8.69 9.99 8.92 12.06
Securities 23.39 14.25 20.94 19.11
Loans 63.01 56.66 63.68 51.18

Deposits 76.85 62.62 80.69 68.04
Fed funds/Repos/Other borrowing 12.20 17.97 11.00 17.38
Equity 9.44 8.07 10.61 11.13

Note: Data correspond to commercial banks in the U.S. Source: Consolidated Report of Condition

and Income.

We note that loans (which we will denote ℓθict



As discussed in the introduction, current regulation in the U.S. (based on Basel II guide-
lines) establishes that each individual bank, each bank holding company (BHC), and each
bank within a BHC is subject to three basic capital requirements: (i) Tier 1 capital to total
assets must be above 4% (if greater than 5% banks are considered well capitalized); (ii) tier
1 capital to risk-weighted assets must exceed 4% (if greater than 6% banks are considered
well capitalized); and (iii) total capital to risk-weighted assets must be larger than 8% (if
greater than 10% banks are considered well capitalized).10

Given the timing in our model, we can express the risk-weighted capital ratio as eθt/ℓθt and
the capital-to-assets ratio as eθt/(ℓ

θ
t + Aθ

t+1). Table 1 documents that equity-to-assets ratios
are larger for small banks in the early sample and the relation changes for the latest year
in our sample. Further, since we are interested in bank capital ratios by bank size, Figure
1 presents the evolution of the ratios of Tier 1 capital-to-assets ratio and Tier 1 capital-to
-risk-weighted-assets Ratio for Top 1% and Bottom 99% banks when sorted by assets.

Figure 1: Average Bank Capital by Size
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(det) refers to detrended real log-GDP. The trend is extracted using the H-P filter with parameter

6.25.

In all periods, risk-weighted capital ratios are lower for large banking institutions than
those for small banks.11 The fact that capital ratios are above what regulation defines as

10Tier 1 capital is composed of common and preferred equity shares (a subset of total bank equity). Tier
2 capital includes subordinated debt and hybrid capital instruments such as mandatory convertible debt.
Total capital is calculated by summing Tier 1 capital and Tier 2 capital.

11Capital ratios based on total assets (as opposed to risk-weighted assets) present a similar pattern.
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well capitalized suggests a precautionary motive.
While 1 presents the cross-sectional average for big (top 1%) and small (bottom 99%)

banks across time, the average masks the fact that some banks spend time at the constraint
(and even violate the constraint). Figure 2 plots the histogram of all banks across several
years.

Figure 2: Distributions of Bank Capital
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Source: Consolidated Report of Condition and Income. GDP (det) refers to detrended real log-



Figure 3: Bank Capital and Business Cycles
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The correlation of the Tier 1 capital ratio and GDP is -0.75 and -0.18 for the top 1% and
bottom 99% banks, respectively. That the correlation for small banks is less countercyclical
than for large banks suggests that small banks try to accumulate capital during good times
to build a buffer against bank failure in bad times. In fact, the correlation between Tier 1
capital to total assets and GDP is -0.28 for the top 1% banks and 0.32 for the bottom 99%
banks.

3 Environment

Our dynamic banking industry model is based upon the static framework of Allen and Gale
[ Gale



3.1 Borrowers

Borrowers demand bank loans in order to fund a project. The project requires one unit of
investment at the beginning of period t and returns at the end of the period:

{
1 + zt+1Rt with prob p(Rt, zt+1)
1− λ with prob [1− p(Rt, zt+1)]

(1)

in the successful and unsuccessful states, respectively. Borrower gross returns are given
by 1 + zt+1Rt in the successful state and by 1 − λ in the unsuccessful state. The success
of a borrower’s project, which occurs with probability p(Rt, zt+1), is independent across
borrowers but depends on the borrower’s choice of technology Rt ≥ 0 and an aggregate
technology shock at the end of the period denoted zt+1 (the dating convention we use is that
a variable chosen/realized at the end of the period is dated t+1). The aggregate technology
shock zt ∈ {zc, zb, zg} with zc < zb < zg (i.e., “crisis”, “bad” and ”good” states) evolves as a
Markov process F (z′, z) = prob(zt+1 = z′|zt = z).

At the beginning of the period when the borrower makes his choice of Rt, zt+1 has not been
realized. As for the likelihood of success or failure, a borrower who chooses to run a project
with higher returns has more risk of failure and there is less failure in good times. Specifically,
p(Rt, zt+1) is assumed to be decreasing in Rt and p(Rt, zg) > p(Rt, zb) > p(Rt, zc). While
borrowers are ex-ante identical, they are ex-post heterogeneous owing to the realizations of
the shocks to the return on their project. We envision borrowers either as firms choosing a
technology that might not succeed or households choosing a house that might appreciate or
depreciate.

There is limited liability on the part of the borrower. If rLt is the interest rate on bank
loans that borrowers face, the borrower receives max{zt+1Rt − rLt , 0} in the successful state
and 0 in the failure state. Specifically, in the unsuccessful state he receives 1−λ which must
be relinquished to the lender. Table 2 summarizes the risk-return tradeoff that the borrower
faces if the industry state is ζ .

Table 2: Borrower’s Problem

Borrower Chooses R Receive Pay Probability
− +

Success 1 + z′R 1 + rL(ζ, z) p (R, z′)
Failure 1− λ 1− λ 1− p (R, z′)

Borrowers have an outside option (reservation utility) ωt ∈ [ω, ω] drawn at the beginning
of the period from distribution function Ω(ωt).

3.2 Depositors

Households are endowed with one unit of the good and have strictly concave preferences
denoted u(Ct). Households have access to a risk-free storage technology yielding 1 + r with
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r ≥ 0 at the end of the period. They can also choose to supply their endowment to a bank
or to an individual borrower. If the household deposits its endowment with a bank, they
receive rDt whether the bank succeeds or fails since we assume deposit insurance. If they
match with a borrower, they are subject to the random process in (1). At the end of the
period they pay lump-sum taxes τt+1, which are used to cover deposit insurance for failing
banks.

3.3 Banks

We assume there are two types of banks: θ ∈ {b, f} for big and small/fringe banks, respec-
tively. We assume there is a representative big bank.13 If active, the big bank is a Stackelberg
leader, each period choosing a level of loans before fringe banks make their choice of loan
supply. Consistent with the assumption of Cournot competition, the dominant bank un-



we can define bank equity capital eθi,t as

eθi,t ≡ Aθ
i,t + ℓθi,t︸ ︷︷ ︸
assets

− dθi,t︸︷︷︸
liabilities

. (4)

If banks face a capital requirement, they are forced to maintain a level of equity that is
at least a fraction ϕθ of risk-weighted assets (with weight w on the risk free asset). Thus,
banks face the following constraint:

eθi,t ≥ ϕθ(ℓθi,t + wAθ
i,t) ⇒ ℓθi,t(1− ϕθ) + Aθ

i,t(1− wϕθ)− dθi,t ≥ 0. (5)

If w is small, as called for in the BIS Basel Accord, then it is easier to satisfy the capital
requirement the higher is Aθ

i,t and the lower is ϕθ. Securities relax the capital requirement
constraint, but also affect the feasibility condition of a bank. This creates room for a pre-
cautionary motive for net securities and the possibility that banks hold capital equity above
the level required by the regulatory authority.14

Following the realization of zt+1, bank i of type θ can either borrow short term to finance
cash flow deficiencies or store its cash until the next period. Specifically, denote short-term
borrowings by Bθ

i,t+1 > 0 and cash storage by Bθ
i,t+1 < 0. The net rate at which banks

borrow or store is denoted rBt (Bi,t+1). For instance, if the bank chooses to hold cash over to
the next period, then rBt (Bi,t+1) = 0.

Bank borrowing must be repaid at the beginning of the next period, before any other
actions are taken. We assume that borrowing is subject to a collateral constraint:15

Bθ
i,t+1 ≤

Aθ
i,t

(1 + rBt ).
(6)

Repurchase agreements are an example of collateralized short-term borrowing, while federal
funds borrowing is unsecured. This implies that beginning-of-next-period cash and securities
holdings are given by

aθi,t+1 = Aθ
i,t − (1 + rBt )B

θ
i,t+1 ≥ 0. (7)

As in Cooley and Quadrini [12] and Hennesy and Whited [25], we assume that, in order
to cover negative cash flow, banks also have access to outside funding or equity financing

14Another policy proposal is associated with bank liquidity requirements. Basel III [5] proposed that the
liquidity coverage ratio, which is the stock of high-quality liquid assets (which include government securities)
divided by total net cash outflows over the next 30 calendar days, should exceed 100%. In the context of
a model period being one year, this would amount to a critical value of 1/12 or roughly 8%. This is also
close to the figure for reserve requirements that is bank-size dependent, anywhere from zero to 10%. Since
reserves now pay interest, bank liquidity requirements are similar in nature to current reserve requirement
policy in our model. For the model, we assume

γθdθ
i,t ≤ Aθ

i,t,

where γθ denotes the (possibly) size-dependent liquidity requirement.
15Along with limited liability, the collateral constraint can arise as a consequence of a commitment problem

as in Gertler and Kiyotaki [23].
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4 Industry Equilibrium

Since we will use recursive methods to define an equilibrium, let any variable nt be denoted
n and nt+1 be denoted n′.

4.1 Borrower Decision Making

Starting in state z, borrowers take the loan interest rate rL as given and choose whether to
demand a loan and, if so, which technology R to operate. Specifically, if a borrower chooses
to participate, then given limited liability his problem is to solve:

v(rL, z) = max
R

Ez′|z

[
p(



then (15) implies ∂Ld(rL,z)
∂rL

< 0.

4.2 Depositor Decision Making

If rD = r, then a household would be indifferent between matching with a bank and using
the autarkic storage technology so we can assign such households to a bank. If it is to match
directly with a borrower, the depositor must compete with banks for the borrower. Hence,
in successful states, the household cannot expect to receive more than the bank lending rate
rL but of course could choose to make a take-it-or-leave-it offer of their unit of a good for a
return r̂ < rL and hence entice a borrower to match with them rather than a bank. Given
state-contingent taxes τ(ζ, z, z′), the household matches with a bank and makes a deposit
provided provided

U ≡ Ez′|z [u(1 + r − τ(ζ, z, z′))] >

max
r̂<rL

Ez′|z

[
p(R̂, z′)u(1 + r̂ − τ(ζ, z, z′))

+(1− p(R̂, z′))u (1− λ − τ(ζ, z, z′))

]
≡ UE . (17)

Condition (17) makes clear the reason for a bank in our environment. By matching with
a large number of borrowers, the bank can diversify the risk of project failure and this is
valuable to risk-averse households. It is the loan-side uncertainty counterpart of a bank in
Diamond and Dybvig [15].

If this condition is satisfied, then the total supply of deposits is given by

Ds = db(a, δ, z, ζ) +

∫
df(a, δ, z, ζ)ζf(da, dδ) ≤ 1. (18)

4.3 Incumbent Bank Decision Making

After being matched with δ deposits, an incumbent bank i of type θ chooses loans ℓθi , deposits
dθi , and asset holdings Aθ

i in order to maximize expected discounted dividends/cash flows.
We assume Cournot competition in the loan market. Following the realization of z′, banks
can choose to borrow or store Bθ′

i and decide whether to exit xθi .
Let σ−i denote the industry state dependent balance sheet, exit, and entry strategies of

all other banks. Given the Cournot assumption, the big bank takes into account that it
affects the loan interest rate and its loan supply affects the total supply of loans by fringe
banks. Differentiating the bank profit function πθi defined in (3) with respect to ℓθi we obtain

dπθi
dℓθi

=
[

prL − (1− p)λ − cθ︸ ︷︷ ︸
(+) or (−)

]
+ ℓθi

[
p︸︷︷︸
(+)

+
∂p

∂R

∂R

∂rL
(rL + λ)

︸ ︷︷ ︸
(−)

] drL

dℓθi︸︷︷︸
(−)

. (19)

The first bracket represents the marginal change in profits from extending an extra unit of
loans. The second bracket corresponds to the marginal change in profits due to a bank’s
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influence on the interest rate it faces. This term will reflect the bank’s market power; for
dominant banks drL

dℓbi
< 0 while for fringe banks drL,j

dℓ
f
i

= 0.

Let the total supply of loans by fringe banks as a function of the aggregate state and the
amount of loans that the big bank makes ℓb be given by

Lf (z, ζ, ℓb) =

∫
ℓfi (a, δ, z, ζ, ℓb)ζf(da, dδ). (20)

The loan supply of fringe banks is a function of ℓb because fringe banks move after the big
bank.

The value of a big bank at the beginning of the period but after overnight borrowing has
been paid is

V b(a, δ, z, ζ) = max
ℓ≥0,d∈[0,δ],A≥0

βEz′|zW
b(ℓ, d, A, δ, ζ, z′) (21)

s.t.

a + d ≥ A



where Eb
δ′|δ is the conditional expectation of future liquidity shocks for a big bank (i.e. based

on the transition function Gb(δ′, δ)). Equation (29) corresponds to the evolution of the
aggregate state.

The value of exit is

W b,x=1(ℓ, d, A, δ, ζ, z′) = max

{
ξ
[
{p(R, z′)(1 + rL) + (1− p(R, z′))(1− λ)− cb}ℓ

+(1 + ra)A
]
− d(1 + rD)− κb, 0

}
(30)

The lower bound on the exit value is associated with limited liability. The solution to
problem (21)-(30) provides big bank decision rules ℓb(a, δ, z, ζ), Ab(a, δ, z, ζ), db(a, δ, z, ζ),
Bb′(ℓ, d, A, δ, z′, ζ), ab

′

(ℓ, d, A, δ, z′, ζ) and xb(ℓ, d, A, δ, z′, ζ) as well as value functions.
Next we turn to the fringe bank problem. The fringe bank takes as given the aggregate

loan supply (and thus the interest rate). The value of a fringe bank at the beginning of the
period but after any borrowings or dividends have been paid is

V f(a, δ, z, ζ) = max
ℓ≥0,d∈[0,δ],A≥0

βEz′|zW
f(ℓ, d, A, δ, ζ, z′), (31)

s.t.

a + d ≥ A + ℓ (32)(3(1−



The value of exit is

W f,x=1(ℓ, d, A, δ, ζ, z′



4.5 Funding Deposit Insurance

Across all states (ζ, z, z′), taxes must cover deposit insurance in the event of bank failure.
Let post-liquidation net transfers be given by

∆θ = (1 + rD)dθ − ξ
[
{p(1 + rL) + (1− p)(1− λ)− cθ}ℓθ + Aθ′(1 + ra)

]
,

where ξ ≤ 1 is the post-liquidation value of the bank’s assets and cash flow. Then aggregate
taxes are given by

τ(z, ζ, z′) · Ξ =

∫ ∑

δ

xf max{0,∆f}dζf(a, δ) + xbmax{0,∆b}. (44)

4.6 Definition of Equilibrium

Given government policy parameters (ra, rB, ϕθ, w, γθ), a pure strategy Markov Perfect In-
dustry Equilibrium (MPIE) is a set of functions {v(rL, z), R(rL, z)} describing borrower
behavior, a set of functions {V θ

i , ℓθi , dθi , Aθ
i , Bθ′

i , xθi , χθi } describing bank behavior, a loan in-
terest rate rL(ζ, z), a deposit interest rate rD = r, an industry state ζ, a function describing
the number of entrants Eθ(z, ζ, z′), and a tax function τ(z, ζ, z′) such that:

1. Given a loan interest rate rL, v(rL, z) and R(rL, z) are consistent with borrower opti-
mization (11) and (12).

2. At rD = r, the household deposit participation constraint (17) is satisfied.

3. Given the loan demand function, {V θ, ℓθ, dθ, Aθ
i , Bθ′

i , xθ, χθ} are consistent with bank
optimization (21)-(40).

4. The entry asset decision rules are consistent with bank optimization (41) and the
free-entry condition is satisfied (42).

5. The law of motion for the industry state (29) induces a sequence of cross-sectional
distributions that are consistent with entry, exit, and asset decision rules in (43).

6. The interest rate rL(ζ, z) is such that the loan market clears. That is,

Ld(rL, z) = ℓb(ζ) + Lf (ζ, ℓb(ζ)),

where aggregate loan demand Ld(rL, z) is given by (16).

7. Across all states (z, ζ, z′), taxes cover deposit insurance transfers in (44).
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5 Calibration

At this stage, we have not finished calibrating parameters. A model period is set to be one
year. We reduce the process for zt to a two state process zt ∈ {zb, zg} and assume that equity
issuance has no cost but it is possible only for entrants.

We begin with the parameterization of the four stochastic processes: F (z′, z), Gθ(δ′, δ),
p(R, z′), and Ω(ω). To calibrate the stochastic process for aggregate technology shocks
F (z′, z), we use the NBER recession dates and create a recession indicator. More specifically,
for a given year, the recession indicator takes a value equal to one if two or more quarters
in that year were dated as part of a recession. The correlation of this indicator with HP
filtered GDP equals -0.87. Then, we identify years where the indicator equals one with our
periods of z = zb and construct a transition matrix. In particular, the maximum likelihood
estimate of Fkj, the (j, k)th element of the aggregate state transition matrix, is the ratio of
the number of times the economy switched from state j to state k to the number of times
the economy was observed to be in state j. We normalize the value of zg = 1 and choose zb
to match the variance of detrended GDP.

We identify “big” banks with the top 1% banks (when sorted by assets) and the fringe
banks with the bottom 99% of the bank asset distribution. As in Pakes and McGuire [30] we
restrict the number of big banks by setting the entry cost to a prohibitively high number if
the number of incumbents after entry and exit exceeds a given number. In our application,
we choose one. That is, there will be a representative big dominant bank and and a mass Ef

of potential fringe banks. We link loan supply from the model to data in the following way
(this also applies to securities, deposits, and parameters or functions that are expressed in
levels like fixed costs, entry costs, etc.). The model delivers a loan supply ℓb(a, δ, z, ζ) given
by

ℓθ(a, δ, z, ζ) =

∫
ℓθi (a, δ, z, ζ)ζθ(a, δ)(di) ≡ wθ(a, δ)ℓ̄θ(a, δ, z, ζ), (45)

where wθ(a, δ) is the relative fraction of banks of type θ with assets a and matched deposits
δ. Hence, ℓ̄(a, δ, z, ζ) is the “representative” or “average” loan supply by banks of type θ with
assets a and matched deposits δ. Since we work under the assumption of a representative
big bank, the relative mass wθ(a, δ) is not relevant for the determination of equilibrium.
However, it is important when taking the model to the data. For example, the average loan
supply by a big bank is ℓb(a, δ, z, ζ)/wb(a, δ). We set wθ(a, δ) using data from the distribution
of banks. In particular, since we associate big banks with the top 1% banks and fringe banks
with the bottom 99%, we set

∫
wb(a, δ)dζb(a, δ) = 1% and

∫
wf(a, δ)dζf(a, δ) = 99%.

We make the following assumptions when parameterizing the stochastic deposit-matching
process. We assume that the support of δ for big banks is large enough that the constraint
never binds, so we do not need to estimate a process for it. On the other hand, the law of
motion for the deposit-matching technology for fringe banks is parameterized using our panel
of commercial banks in the U.S. In particular, after controlling for firm and year fixed effects
as well as a time trend, we estimate the following autoregressive process for log-deposits for
bank i in period t:

log(δit) = (1− ρd)k0 + ρd log(δit−1) + k1t + k2t
2 + k3,t + γi + uit, (46)
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where t denotes a time trend, k3,t are year fixed effects, γi are bank fixed effects, and uit is
iid and distributed N(0, σ2

u).
19 Since this is a dynamic model we use the method proposed

by Arellano and Bond [4]. To keep the state space workable, we apply the method proposed
by Tauchen [32] to obtain a finite state Markov representation



trans-log cost function:

log(Tit) = ai + k1 log(w
1
it) + h1 log(ℓit) + k2 log(yit) + k3 log(w

1
it)

2 (48)

+h2[log(ℓit)]
2 + k4[log(yit)]

2 + h3 log(ℓit) log(yit) + h4 log(ℓit) log(w
1
it)

+k5 log(yit) log(w
1
it) + k6 log(xit) +

∑

j=1,2

k7,jt
j + k8,t + ǫit,

where Tit is total non-interest expense minus expenses on premises and fixed assets, w1
it

corresponds to input prices (labor), ℓit corresponds to real loans (one of the two bank j’s
output), yit represents securities and other assets (the second bank output measured by
real assets minus loans minus fixed assets minus cash), xit is equity (a fixed netput), the t
regressor refers to a time trend, and k8,t refers to time fixed effects. We estimate this equation
by panel fixed effects with robust standard errors clustered by bank. Marginal non-interest
expenses are then computed as:

∂Tit
∂ℓit

=
Tit
ℓit

[
h1 + 2h2 log(ℓit) + h3 log(yit) + h4 log(w

1



real equity return (12.94%) as reported by Diebold and Yilmaz [17] is added to shed light
on the borrower’s return pz′R∗. The set of targets from commercial bank data includes
the standard deviation of net-interest margin (0.89%), the standard deviation of the default
frequency (1.49%), the net interest margin (4.70%), the average default frequency (2.33%),
the elasticity of loan demand (-1.40 as estimated by Bassett, Chosak, Driscoll and Zakrajsek
(2013)), the loans to asset ratio of the top 1% (55.52%), the loans to asset ratio of the bottom
99% (60.06%), the deposit market share of the bottom 99% (46.59%), the fixed cost over
loans (as presented in Table 3) for banks of different sizes, the bank entry rate (1.55%), the
bank exit rate (0.71%), the equity to risk-weighted assets for top 1% banks (9.70%) and the
equity to risk weighted assets for bottom 99% (14.59%).22

We use the following definitions to connect the model to the variables we presented in
the data section.

Definition Model Moments

Aggregate loan supply Ls(z, ζ) = ℓb + Lf (z, ζ, ℓb)

Aggregate Output Ls(z, ζ)
{

p(z, ζ, z′)(1 + z′R) + (1− p(z, ζ, z′))(1− λ)
}

Entry Rate Ef/
∫

ζ(a, δ)
Default Frequency 1− p(R∗, z′)
Borrower Return p(R∗, z′)(z′R∗)
Loan Return p(R∗, z′)rL(z, ζ) + (1− p(R∗, z′))λ
Loan Charge-off Rate (1− p(R∗, z′))λ
Interest Margin p(R∗, z′)rL(z, ζ)− rd

Loan Market Share, Bottom 99% Lf (ζ, ℓb(ζ))/
(
ℓb(ζ) + Lf (ζ, ℓb(ζ))

)

Deposit Market Share, Bottom 99%
∫
a,δ

df (a,δ,z,ζ)dζ(a,δ)
∫
a,δ

df (a,δ,z,ζ)dζ(a,δ)+db(a,δ,z,ζ)

Risk- Weighted Capital Ratio eθ(a, δ, z, ζ)/ℓθ(a, δ, z, ζ)
Leverage Capital Ratio eθ(a, δ, z, ζ)/(ℓθ(a, δ, z, ζ) + Aθ(a, δ, z, ζ))
Securities to Assets Ratio Aθ(a, δ, z, ζ)/(ℓθ(a, δ, z, ζ) + Aθ(a, δ, z, ζ))

Profit Rate
πℓi(θ)(·)

ℓi(θ)

Lerner Index 1−
[
rd + cθ,exp

]
/
[
p(R∗(ζ, z), z′, s′)rL(ζ, z) + cθ,inc

]

Markup
[
p(R∗(ζ, z), z′)rL(ζ, z) + cθ,inc

]
/
[
rd + cθ,exp

]
− 1

Table 4 shows the calibrated parameters.

22The sample period is 1976 - 2013. Averages correspond to asset weighted averages. Measures of volatility
correspond to within bank variation over time after extracting year and bank fixed effects.
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Table 4: Model Parameters

Parameter Value Target
Dep. preferences σ 2 Part. constraint
Agg. shock in good state zg 1 Normalization
Transition probability F (zg, zg) 0.86 NBER data
Transition probability F (zb, zb) 0.43 NBER data
Deposit interest rate (%) r̄ = rd 0.86 Int. expense
Net. non-int. exp. n bank cb 1.62 Net non-int exp. top 1%
Net. non-int. exp. r bank cf 1.60 Net non-int exp. bottom 99%
Charge-off rate λ 0.21 Charge off rate
Autocorrel. deposits ρd 0.84 Deposit process Bottom 99%
Std. dev. error σu 0.19 Deposit process Bottom 99%
Securities return (%) ra 1.20 Avg. return Securities
Cost overnight funds rB 1.20 Avg. return Securities
Capital requirement, top 1% (ϕb, w) (4.0, 0) Basel II Capital Regulation
Capital requirement, bottom 99% (ϕf , w) (4.0, 0) Basel II Capital Regulation
Agg. shock in bad state zb 0.969 Std. dev. Output
Weight agg. shock α 0.883 Std. dev. net-int. margin
Success prob. param. b 3.773 Borrower Return
Volatility borrower’s dist. σǫ 0.059 Std. deviation default frequency
Success prob. param. ψ 0.784 Net Interest Margin
Mean entrep. project dist. µe -0.85 Default freq.
Max. reservation value ω 0.227 Elasticity Loan Demand
Discount Factor β 0.95 Loans to asset ratio Top 1%
Salvage value ξ 0.70 Loans to asset ratio Bottom 99%
Mean deposits µd 0.04 Deposit mkt share bottom 99%
Fixed cost b bank κb 0.100 Fixed cost over loans top 1%
Fixed cost f banks κf 0.001 Fixed cost over loans bottom 99%
Entry Cost b bank Υb 0.050 Bank entry rate
Entry Cost f banks Υf 0.006 Bank exit rate

Equity over assets top 1%
Equity over assets bottom 99%

The finite state Markov representation Gf(δ′, δ) obtained using the method proposed by
Tauchen [32] and the estimated values of µd, ρd and σu is:

Gf(δ′, δ) =




0.632 0.353 0.014 0.000 0.000
0.111 0.625 0.257 0.006 0.000
0.002 0.175 0.645 0.175 0.003
0.000 0.007 0.257 0.625 0.111
0.000 0.000 0.014 0.353 0.637




,
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and the corresponding grid is δ ∈ {0.019, 0.028, 0.040, 0.057, 0.0.081}. The distribution
Ge,f(δ) is derived as the stationary distribution associated with Gf (δ′, δ).

Table 5 provides the moments generated by the model for the above parameter values
relative to the data. Once again we note that the calibration is preliminary and so several
model moments are relatively far from their targets.

Table 5: Model and Data Moments

Moment (%) Data Model
Std. dev. Output 1.46 1.97
Std. dev. net-int. margin 0.89 0.34
Borrower Return 12.94 12.33
Std. deviation default frequency 1.49 1.14
Net Interest Margin 4.70 5.69
Default freq. 2.33 2.69
Elasticity Loan Demand -1.40 -0.96
Loans to asset ratio Top 1% 55.52 96.32
Loans to asset ratio Bottom 99% 60.06 93.48
Deposit mkt share bottom 99% 46.59 29.25
Fixed cost over loans top 1% 1.08 0.95
Fixed cost over loans bottom 99% 2.29 2.23
Bank entry rate 1.55 1.60
Bank exit rate 0.71 1.65
Equity over assets top 1% 9.70 4.23
Equity over assets bottom 99% 14.59 13.10
Avg. Loan Markup 54.68 71.19
Loan Market Share Bottom 99% 36.83 53.93
Securities to Asset Ratio Top 1% 15.58 3.68
Securities to Asset Ratio Bottom 99% 11.56 6.52
Std. dev. Ls/Output 1.13 0.82

Note: Moments below the line correspond to data moments not targeted during the calibration.

6 Results

For the parameter values in Table 4, we find an equilibrium where exit occurs along the
equilibrium path by fringe banks with small to median deposit holdings and low asset levels
(i.e., δ ≤ δM = 0.04 and a ≤ 0.004) as well as fringe banks with bigger than median deposit
holdings but even smaller asset levels (i.e. δ > δM and a ≤ 0.002) if the economy heads
into bad times (i.e. z = zg and z′ = zb).

23 Dominant-bank exit is not observed along the

23We also find that fringe banks with low asset levels (a ≤ 0.



equilibrium path. On the equilibrium path, fringe banks that survive the arrival of a bad
aggregate shock accumulate securities in order to avoid exit.

6.1 Equilibrium Decision Rules

To understand the equilibrium, we first describe borrower decisions. Figure 4 shows the
borrower’s optimal choice of project riskiness R∗(rL, z) and the inverse demand function
associated with Ld(rL, z). The figure shows that the borrower’s optimal project R is an
increasing function of the loan interest rate rL. This is what Boyd and DeNicolo [9] call the
“risk shifting” effect; that is, higher interest rates lead borrowers to choose riskier projects.
Moreover, given that the value of the borrower is decreasing in rL, aggregate loan demand is
a decreasing function of rL. The figure also illustrates that loan demand is procyclical; that
is, for a given interest rate, loan demand is higher in state zg than in zb.

Figure 4: Borrower Project and Inverse Loan Demand
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Next we turn to characterizing bank decision rules. Note that while these are equilibrium
functions, not every state is necessarily on the equilibrium path. It is best to work backwards
and start with the exit decision rule. Since we find the big bank does not t twe k e fiono



Figure 5: Fringe Banks’ Exit Rule (for different values δ)
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Banks try to start the next period with sufficient assets to avoid exit (since exit means
the bank loses its charter value). Figure 6 plots beginning-of-next-period’s asset choices by
the big bank and the median fringe bank (what we called aθi,t+1 in (7)). Note that the big
bank augments future net assets at low current levels in all states except when the economy
enters a recession from a boom. The latter arises because the big bank chooses to borrow
in that state. The figure also shows that the median fringe bank is more likely to save at
higher asset levels than a big bank.
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Figure 6: Big Bank and Median Fringe Bank Future Securities Rule aθ
′
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Figure 7 plots beginning-of-next-period’s asset choices by the smallest and largest fringe
bank types. The figure shows that the smallest fringe bank is more constrained and unable
to raise future securities like the largest fringe bank.

Figure 7: Fringe Banks’ Future Securities Rule aθ
′

(for different values δ)
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The big and median fringe bank borrowing decision rules are illustrated in Figure 8. It
is evident from panel (ii) that both the big bank (at almost all asset levels) and fringe banks
(at low asset levels) borrow when entering a recession from good times. At all other times
the banks store cash and/or lend short term.

Figure 8: Big Bank and Median Fringe Bank Borrowing Rule Bθ′
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Figure (9) shows the borrowing decision rules for the smallest and largest fringe banks.
Fringe banks of both sizes store about the same amounts, except that the largest fringe bank
stores significantly less as the economy enters a recession.
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Figure 9: Fringe Banks Borrowing Rule Bθ′ (for different values δ)
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The dividen decision rules for big and median fringe banks are illustrated in Figure 10.
While dividends are constrained to be non-negative in (8), strictly positive payouts arise only
if the bank has sufficiently high assets. The figure shows that a median fringe bank with
sufficient assets follows a much more variable dividend policy than the big bank starting in
a recession. Panel (ii) shows the dividend policy is procyclical when starting in a boom, but
panel (i) exhibits countercyclical behavior when starting from a recession. Much of dividend
policy can be understood in terms of differences in short-term saving/borrowing between big
and small banks.
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Figure 10: Big Bank and Median Fringe Bank Dividend Rule Dθ
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Figure (11) suggests that the biggest fringe banks are more likely to make dividend
payouts than the smallest fringe banks.

Figure 11: Fringe Banks’ Dividend Rule Dθ (for different values δ)
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The beginning-of-period equity ratio eθ

ℓθ
is illustrated in Figure 12. Recall from (4) that

32



at the beginning of the period, equity is given by eθ = Aθ + ℓθ − dθ and that capital
requirements with w = 0 are given by eθ ≥ ϕθℓθ in (5). The figure also plots the capital
requirement ϕθ = 0.04. As shown, the capital requirement is nonbinding for the median
fringe bank across all asset levels. The capital requirement for big banks is binding for low
levels of assets (and hence independent of the business cycle), but at higher asset levels ratios
become higher in recessions relative to booms. The figure also shows that, at low asset levels,
the fringe bank has a significantly higher ratio than the big bank. At very high asset levels
(which are off the equilibrium path and not pictured) the relative positions change.

Figure 12: Big Bank and Median Fringe Bank Equity Ratios e/ℓ = (A + ℓ − d)/ℓ
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Figure (13) shows that small fringe banks have much higher equity ratios than large
fringe banks across all asset levels. In particular, the figure provides evidence of the same
type of ranking of capital ratios across big and small fringe banks, as is evidenced between
the median fringe and dominant bank.
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Figure 13: Fringe Banks Equity Ratios e/ℓ = (A + ℓ − d)/ℓ (for different values δ)
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The beginning-of-period loan decision rules for dominant and median fringe banks are
illustrated in the top panel of Figure 14. If the dominant bank has sufficient assets, the figure
shows that it extends more loans in good than bad times. However, at low asset levels, it
extends fewer loans in good times than bad times because there is a greater chance of loan
losses associated with a downturn. The same is true for its deposit decision. The figure
also shows the effects of the capacity constraint on fringe banks. In particular, since the
matching function is independent of aggregate state and asset holdings, so too are deposit
holdings in Panel (ii). Panel (i) shows that fringe banks with more assets can make more
loans (linearly). Since there is a simple ranking of loans and deposits among fringe banks,
we do not graph that case.
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Figure 14: Big Bank and Median Fringe Bank Loan and Deposit Decision Rules ℓθ and dθ
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Figure 15: Value Fringe Bank Potential Entrant

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
2

3

4

5

6

7

8
x 10

−3

Mass Fringe Banks (M ′)

Value Entrant Ve

 

 
z′b
z′g

Figure 16 graphs the long-run average distribution of bank assets for three different types
of fringe banks as well as the dominant bank.24 Recall that there is no invariant distribution
since there is aggregate uncertainty. In this figure, we show the average distribution that
arises along the equilibrium path. More specifically, each period the model generates a
distribution of fringe banks ζft (a, δ). This figure presents the average of 50 simulated panels
of ζ̄f(a, δ) =

∑T

t=1 ζft (a, δ)/T , where T = 2000 is the number of simulated periods.25 The
values presented for the big bank correspond to the fraction of time that the big bank spends
along the equilibrium path in each asset level (i.e. the histogram of securities). It is evident
from the figure that the distribution of security holdings of the big bank is lower than that
of the fringe banks.

24To map this distribution into a distribution like that in the Data section, one simply needs to divide by
ℓ + A.

25We discard the first 500 periods of the simulation to avoid dependence on initial conditions.
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Figure 16: Average Distribution of Fringe and Big Banks
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It is evident from Figure 17 that the fraction of capital-requirement-constrained banks rise
during downturns (the correlation between the fraction of banks at the capital requirement
constraint and output is -0.85). The intuition is simple: banks accumulate securities in good
times and use them to cover losses during bad times. During tranquil times there is also an
effect on the fraction of constrained banks that is coming from entrants. These banks start
with a low level of assets, and this generates the small increase in the fraction of constrained
banks accompanied by an increase in the total mass of incumbents.

6.2 Test I: Business Cycle Properties

We now move on to moments that the model was not calibrated to match, so that these
results can be considered a simple test of the model. Table 6 provides the correlation between
key aggregate variables with output.26 We observe that, as in the data, the model generates
countercyclical loan interest rates, exit rates, default frequencies, loan returns, charge-off
rates, price-cost margins, markups, and capital ratios across bank sizes. Moreover, the
model generates procyclical entry rates as well as aggregate loans and deposits.

Table 6: Business Cycle Correlations

Variable Correlated with Output Data Model
Loan Interest Rate rL -0.18 -0.96
Exit Rate -0.33 -0.07
Entry Rate 0.21 0.01
Loan Supply 0.55 0.97
Deposits 0.16 0.95
Default Frequency -0.66 -0.21
Loan Interest Return -0.27 -0.47
Charge Off Rate -0.35 -0.22
Price Cost Margin Rate -0.39 -0.47
Markup -0.34 -0.96
Capital Ratio Top 1% (risk-weighted) -0.75 -0.16
Capital Ratio Bottom 99% (risk-weighted) -0.18 -0.03

Figure 18 plots a simulation of capital ratios for big and fringe banks across a 100 period
sample realization of business cycle shocks.

26We use the following dating conventions in calculating correlations. Sin



Figure 18: Capital Ratios over the Business Cycle
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It is clear from this figure that equity ratios are countercyclical. The countercyclicality
is driven mainly by changes in equity ratios in periods where z 6= z′. Intuitively, expansions
(i.e., periods where z = zb and z′ = zg) are preceded by periods in which banks reduced their
level of securities in order to cover negative profits. The end of the recession is accompanied
by an increase in the number of loans at a low level of securities generating a drop in the
bank capital ratio. Similarly, before heading into a recession banks accumulate securities
in order to cover possible losses. Thus, the beginning of a recession is associated with high
capital ratios.

Consistent with the data, the model correlation between fringe banks’ capital ratio and
output is lower than that of the big bank. During tranquil times (i.e., periods where z = z′ =
zg) the capital ratio of fringe banks increases (tracking output) while the big bank’s capital
ratio remains constant. The reason behind this result is simple. Fringe banks face liquidity
risk that big banks do not. In order to extend more loans and avoid being constrained by
sudden changes in δ, they accumulate securities whenever possible (evident in the higher
long-run average securities observed in Figure 16). Figure 6 shows that for states where
z′ = zg the securities accumulation decision rule for the median fringe bank crosses the
45-degree line at a higher level of securities than that of the big bank.

Figure 19 presents the evolution of the mass of fringe banks as well as entry and exit
rates over the business cycle. When the economy enters into a recession, a fraction of fringe
banks exit. If, as in periods 35 to 40, fringe banks’ equity ratios are not high enough, the
fraction of banks exiting is larger. The reduction in the number of banks is compensated by
entry of new banks. However, in some instances entry is gradual and the level of competition
is not restored immediately.
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Figure 19: Competition over the Business Cycle
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6.3 Test II: Monetary Policy and Bank Lending

Kashyap and Stein [27] ask the question, Is the impact of monetary policy on lending behavior
stronger for banks with less liquid balance sheets, where liquidity is measured by the ratio
of securities to assets? They find strong evidence in favor of this bank lending channel.
The result is driven largely by the smaller banks (those in the bottom 95% of the size
distribution). We perform a similar experiment with our model as an additional test.

To understand their results, consider two small banks, both of which face limitations in
raising uninsured external finance. The banks are alike except that one has a much more
liquid balance sheet position than the other. Now imagine that these banks are hit by a
contractionary monetary shock, which causes them both to lose insured deposits. In the
extreme case where they cannot substitute at all toward other forms of finance, the asset
side of their balance sheets must shrink. But the more liquid bank can relatively easily
protect its loan portfolio, simply by drawing down on its large buffer stock of securities. In
contrast, the less liquid bank is likely to have to cut loans significantly if it does not want
to see its securities holdings sink to a dangerously low level.

Their paper tests two hypotheses. First,
∂L2

it

∂Bit∂Mt
< 0, where Lit is bank i level of lending,
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Bit is a measure of bank balance sheet strength, andMt is a monetary policy indicator (where
higher M stands for easier policy). We interpret an expansion in M as a reduction in ra.
The sign of the cross-sectional derivative ∂Lit

∂Bit
is indicative of binding financing constraints

which are absent in a Modigliani-Miller world.The second derivative
∂
(

∂Lit
∂Bit

)

∂Mt
says that the

constraint is loosened when monetary policy is looser. Second,
∂L3

it

∂Bit∂Mt∂sizeit
> 0, where

sizeit refers to bank-size class (i.e., for all i in a given size class). The balance sheet effect is
expected to be strongest for banks in the smallest size class since the largest banks should
have an easier time raising uninsured finance, which would make their lending less dependent
on monetary policy shocks, irrespective of their internal liquidity positions.

To test these hypotheses, Kashyap and Stein run a two-step procedure on the same Call
Report data that we have calibrated our structural model to. In the first step, for each
t, they run a cross-sectional regression ∆Lit = βt · Bit−1 + other separately for each size
class (i.e., for all i in a given size class). In the second step, for each size class, they run
βt =

∑4
j=0 φj∆Mt−j + other. The hypothesis is

∑4
j=0 φj < 0 for the smallest size banks.

We implement this policy experiment by analyzing how a permanent reduction in rB to
0% affects the balance sheet and lending behavior of banks of different sizes. We simulate
the model and construct a pseudo-panel of banks under each value of rB. We then follow

Kashyap and Stein two-step procedure to estimate the value of
∂
(

∂Lit
∂Bit

)

∂Mt
. More specifically, in

the first stage, for both samples and each period, we estimate the following cross-sectional
regression:

∆Lit = a0 + βtBt−1 + ut, (50)

where ∆Lit =
ℓit−ℓit−1

ℓit−1
(i.e., the growth rate of loans), and Bt =

At

(At+lt)
(i.e. the fraction of

securities to total assets) is the measure of liquidity as defined by Kashyap and Stein. From
this set of regressions we obtain a sequence of βt under each monetary regime. Then, with
the sequence of βt at hand, we estimate the second stage as follows:

βt = b0 + b1∆outputt + φdMt, (51)

where ∆outputt is the growth rate of intermediated output and dMt is a dummy variable
that equals 1 if the observation belongs to the sample with rB = 0%. A negative coefficient
is consistent with the findings in Kashyap and Stein since that means that βt are, on average,

lower with the easier monetary policy or that
∂
(

∂Lit
∂Bit

)

∂Mt
< 0. Following Kashyap and Stein,

we focus on the small banks (our fringe sector) based on the idea that these banks are least
likely to be able to frictionlessly raise uninsured finance. Table 7 presents the estimated
coefficients for two samples of small banks (when sorted by deposits).
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Table 7: Monetary Policy and Bank Lending

Sample Bottom 99% Bottom 92%
Dep. Variable

βt βt
Monetary Policy: dMt -0.929 -1.177
s.e. 0.2575∗∗∗ 0.2521∗∗∗

∆outputt 2.53 2.306
s.e. 0.619∗∗∗ 0.586∗∗∗

constant 2.01 2.07
s.e. 0.184∗∗∗ 0.179∗∗∗

N 5000 5000
R2 0.35 0.46

Note: ∗∗∗ significant at 1% level, ∗ significant at 5% level, ∗ significant at 10% level.

As is evident from Table 7, our results are consistent with those presented in Kashyap

and Stein. In particular, we find that
∂
(

∂Lit
∂Bit

)

∂Mt
< 0 (i.e., relaxing monetary policy reduces

the link between lending and the level of liquidity at the bank level) and we also find that
∂L3

it

∂Bit∂Mt∂sizeit
> 0 (i.e., the mechanism at play is stronger for the smallest size banks).

To understand the mechanism at play, Table 8 presents the aggregate and industry effects
of the policy change.
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Table 8: Aggregate and Industry Effects of Monetary Policy

Benchmark Lower rB

(ϕ = 0.04) (ϕ = 0.04) ∆ (%)
Capital Ratio Top 1% 4.23 5.43 28.43
Capital Ratio Bottom 99% 13.10 13.39 2.19
Exit/Entry Rate (%) 1.547 1.904 23.09
Loans to Asset Ratio Top 1% 96.31 73.84 -23.33
Loans to Asset Ratio Bottom 99% 93.47 43.47 -53.49
Measure Banks 99% 2.83 11.63 311.07
Loan mkt sh. 99% (%) 53.93 45.69 -15.28
Avg. Sec. holdings Top 1% 0.458 0.961 109.80
Avg. Sec. holdings Bottom 99% 0.006 0.001 -79.41
Loan Supply 0.229 0.344 50.19
Ls to Int. Output ratio (%) 89.47 89.23 -0.26
Loan Interest Rate (%) 6.79 3.85 -43.23
Borrower Project (%) 12.724 12.652 -0.57
Default Frequency (%) 2.69 1.61 -40.02
Avg. Markup 111.19 35.20 -68.34
Int. Output 0.26 0.39 50.58
Taxes/Output (%) 0.07 0.09 24.99

Table 8 shows that reducing the cost of bank borrowing increases the value of the bank
and results in a large influx of fringe banks (the entry rate goes up +23.09%). This results in
a higher loan supply (+50.19%) that in turn induces a lower interest rate (-43.23%). Lower
profitability associated with the mass of new entrants means that incumbents profitability
falls and induces those incumbents to increase their capital ratios to help prevent exit. lower
incumbent profitability is evident in the higher exit rate (+23.09%). One of the benefits of
relaxing monetary policy is that it results in a higher level of intermediated output (+50.58%)
at the cost of increasing taxes to output (+24.99%) to cover for deposit insurance due to the
higher fraction of banks exiting in equilibrium.

7 Counterfactuals

7.1 Higher Capital Requirements with Imperfect Competition

Here we ask the question, how much does a 50% increase (from 4% to 6%) in capital require-
ments affect bank exit and outcomes? Table 9 presents the results of this counterfactual.
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Table 9: Capital Regulation Counterfactual

Benchmark Higher Cap. Req.
(ϕ = 0.04) (ϕ = 0.06) ∆ (%)

Capital Ratio, Top 1% 4.23 6.09 44.19
Capital Ratio, Bottom 99% 13.10 15.67 19.57
Exit/Entry Rate (%) 1.547 0.843 -45.54
Avg. Loan Supply, Top 1% 10.56 10.01 -5.19
Avg. Loan Supply, Bottom 99% 0.04 0.05 3.45
Measure Banks, Bottom 99% 2.83 2.41



Figure 20: Higher Capital Requirements and Equity Ratios for Big and Fringe Banks
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In the benchmark economy, fringe banks with δH are close to the capital requirement
constraint at low securities levels (af ≤ 0.003). Figure 20 shows that, at this level of
securities, the higher capital requirement induces these fringe banks to increase their equity
ratio. This figure also shows that equity ratios for big banks increase in the economy with
higher capital requirements. The higher capital ratios presented in Table 9 are the result of
not only these changes in decision rules but also the combination of a precautionary motive
and an “income” effect. With a higher capital requirement, banks accumulate more assets
to avoid an increase in the probability of facing a binding constraint. Moreover, the change
in loan market concentration results in higher interest rates and markups, making it easier
for incumbent banks to accumulate securities out of retained earnings. As a result, the
distribution of assets shifts to the right and, since capital ratios are increasing in securities,
incumbent banks end up with higher capital ratios on the equilibrium path.

As Table 9 makes clear, increasing capital requirements has the intended effect of reducing
exit rates by 45.54% for small banks. One novelty of our model is that the level of competition
is endogenous. The reduction in loan supply by big banks induces entry by small banks.
However, the increase in capital requirements (everything else equal) reduces the continuation
value of the bank (since their profits are lower). This effect dominates, resulting in a smaller
measure of fringe banks (-14.64%) and a more concentrated industry. The net effect is an
increase in concentration, a lower loan supply (-8.71%), and an associated increase in interest
rates (+7.56%) and default frequencies (+12.19%). The reduction in the exit rate results in
a reduction of taxes (over intermediated output) to cover deposit insurance (-59% change).

7.2 Interaction between Capital Requirements and Competition

In this subsection, we ask, how much does a 50% increase in capital requirements affect
bank exit and outcomes under an assumption that all banks are perfectly competitive?

45



This experiment is meant to assess the interaction between market structure and changes
in government policy. It provides a comparison between our work and models with perfect
competition and an indeterminate bank-size distribution (such as Van Den Heuvel [33] and
Aliaga-Diaz and Olivero [1]). Table 10 compares the responses to capital requirement changes
in both the benchmark imperfect competition environment to the same policy change in the
perfectly competitive model.

Table 10: Higher Capital Requirements and Competition

Benchmark Model Perfect Competition
Moment ϕ = 4% ϕ = 6% Change (%) ϕ = 4% ϕ = 6% Change (%)
Capital Ratio (%) 13.10 15.667 19.57 9.92 11.77 18.64
Exit/Entry Rate (%) 1.55 0.84 -45.54 0.81 0.69 -14.81
Measure Banks 2.83 2.414 -14.64 5.36 5.13 -4.13
Loan Supply 0.23 0.21 -8.71 0.25 0.24 -2.46
Loan Interest Rate (%) 6.79 7.30 7.56 6.27 6.43 2.50
Borrower Project (%) 12.724 12.742 0.14 12.71 12.71 0.04
Default Frequency (%) 2.69 3.01 12.19 2.44 2.51 3.07
Avg. Markup 111.19 123.51 11.08 113.91 118.58 4.11
Output 0.26 0.23 -8.78 0.28 0.27 -2.47
Ls to Output Ratio (%) 89.47 89.54 0.08 89.42 89.43 0.02
Taxes/Output (%) 0.07 0.03 -58.97 12.60 10.68 -15.20

To understand the interaction between competition and capital requirements, we start
with the competitive analogue to our benchmark. Since our model nests a perfectly com-
petitive environment (our fringe banks), we simply increase the entry cost for the big bank
to a value that prevents entry. All other parameters remain identical to those used for the
benchmark model. The spirit of this exercise is to endogenously generate an environment
where all banks are perfectly competitive (i.e., all banks take prices as given).

Comparing column 1 and column 4 of Table 10 makes evident that, without competition
from big banks, there is a large inflow of fringe banks (2.83 versus 5.36 for an 89.40%
difference). This results in a higher loan supply (8.73% difference) and lower loan interest
rates (-7.55% difference). Further, this results in slightly less risk taking by borrowers (-
0.12% difference) and a lower default frequency (-9.34% difference). The increase in the
number of banks and the reduction in interest rates result in an increase in output (+8.79%
change).

Table 10 also shows an important reduction in capital ratios (-24.30% difference) between
the benchmark and the competitive environment from column 1 to column 4. Recall that the
bank capital ratio is given by e/ℓ = 1+ (A − d)ℓ. Banks’ portfolio composition is driven by
the valuable smoothing role that securities provide in cases of bank distress (negative profits)
and the cost arising from differences in the expected loan spread of loans over securities. In
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the competitive environment, lower interest rates make it harder for banks to accumulate
equity through retained earnings.

Table 11 compares volatility in the imperfect competition environment and the perfectly
competitive environment. It makes clear that the volatility of virtually all aggregates is
lower in the perfectly competitive environment. Thus, since the incentives to self-insure are
reduced, the shadow value of an extra unit of securities also decreases, generating the lower
capital ratios and the difference in portfolio composition between the perfectly competitive
economy and the benchmark.

Table 11: Volatility in Benchmark versus Perfect Competition

Benchmark Perfect Competition
Coefficient of Variation (%) Model (↑ Υb) Change (%)
Loan Interest Rate 4.92 1.78 -63.78
Borrower Return 6.99 6.17 -11.75
Default Frequency 2.08 2.15 3.36
Int. Output 7.46 2.09 -72.03
Loan Supply 7.208 1.127 -84.37
Capital Ratio Fringe 13.83 12.07 -12.70
Measure Banks 0.79 1.90 139.71
Markup 4.727 1.559 -67.02
Loan Supply Fringe 3.13 1.127 -64.05

Comparing columns 4 and 5 of Table 10 shows that, even though capital requirements
rise, the constraint is not binding on average since banks endogenously increase their capital
ratios. Intuitively, since profitability of banks is lower when capital requirements are higher,
there is less entry and the measure of fringe banks falls (-4% change). A lower mass of banks
implies a higher loan interest rate (+2.50% change) and a default frequency that is larger
(+3.07% change) than that of the model with lower capital requirements. The higher loan
interest rate also results in fewer projects being operated and a lower intermediated output
(-2.47% change).

A 50% increase in capital requirements in the competitive environment results in an
increase of 18.64% in the average capital ratio, larger than that for fringe banks in the
benchmark economy. Since the perfectly competitive case is less volatile (as shown in Table
11), a larger fraction of fringe banks are closer to the minimum level of required capital
and this results in the observed differential change in capital ratios for fringe banks across



Table 12: Business Cycle Correlations in Benchmark versus Perfect Competition

Benchmark Perfect Comp. data
Loan Interest Rate rL -0.96 -0.36 -0.18
Exit Rate -0.07 -0.16 -0.25
Entry Rate 0.01 -0.19 0.62
Loan Supply 0.97 0.61 0.58
Deposits 0.95 0.02 0.11
Default Frequency -0.21 -0.80 -0.08
Loan Interest Return -0.47 0.65 -0.49
Charge-off Rate -0.22 -0.80 -0.18
Price Cost Margin Rate -0.47 0.65 -0.47
Markup -0.96 0.29 -0.19
Capital Ratio, Top 1% (risk-weighted) -0.16 - -0.75
Capital Ratio, Bottom 99% (risk-weighted) -0.03 -0.05 -0.12

Table 12 presents a comparison of the business cycle correlations between the benchmark
model and the perfectly competitive model. It is clear from the table that while some of
the predictions of the perfectly competitive model are in line with the data, some important
business cycle correlations are not (e.g., the entry rate, loan interest return, and markups).27

Changes in the level of competition are the main driving force determining the sign of these
correlations. In a perfectly competitive environment, changes in the level of competition
and concentration that induce movements in interest rates (and consequently markups) are
mostly driven by changes in the extensive margin (i.e., changes in the mass of incumbent
banks). Table 12 shows that the interest rate and the default frequency in the competitive
model are consistent with the data. However, the countercyclicality of the default frequency
is 10 times larger than in the data, resulting in loan interest returns and markups that are
procyclical. On the other hand, the main determinant of the level of competition and con-
centration in the model with dominant banks is the change in their strategy. The benchmark
model with imperfect competition generates loan interest returns and markups that are con-
sistent with countercyclicality we find in the data. The evidence presented in this table (as
well as the empirical evidence presented before) provides further support for our benchmark
model.

7.3 Risk Taking without Capital Requirements

Should there be capital requirements at all? Is the charter value of a bank sufficiently
valuable to induce a bank to self-insure and not take on too much risk? In this section, we
analyze the model predictions when capital requirements are completely absent. We also

27Recall that none of the business cycle correlations are part of the set of target moments in the calibration.
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study them in the perfectly competitive environment to understand the interaction between
market structure and regulation.

Table 13: No Capital Regulation Counterfactual

Benchmark Model Perfect Competition
Moment ϕ = 4% No Cap. Req. ∆ (%) ϕ = 4% No Cap. Req. ∆ (%)
Capital Ratio Top 1% 4.23 0.19 -87.41 - - -
Capital Ratio Bottom 99% 13.10 15.73 20.05 9.92 6.67 -32.71
Exit/Entry Rate (%) 1.55 4.81 210.75 0.81 1.04 28.50
Measure Banks 2.83 4.54 60.54 5.36 5.32 -0.68
Loan Supply 0.23 0.16 -28.44 0.25 0.24 -3.06
Loan Interest Rate (%) 6.79 8.47 24.83 6.27 6.47 3.11
Borrower Project (%) 12.724 12.809 0.67 12.71 12.71 0.04
Default Frequency (%) 2.69 4.74 76.39 2.44 2.53 3.79
Avg. Markup 111.19 177.73 59.84 113.91 119.74 5.12
Int. Output 0.26 0.18 -28.57 0.28 0.27 -3.08
Ls to GDP ratio (%) 89.47 89.63 0.18 89.42 89.44 0.02
Taxes/GDP (%) 0.07 0.11 55.80 12.60 17.22 36.72

The benchmark experiment in Table 13 yields an interesting result. When banks are not
subject to capital requirements, big banks lower their capital ratios but small banks actually
raise them. Bank profitability rises when the constraint is removed, inducing an inflow of
fringe banks (the measure of fringe banks rises by 60%). Both big and fringe incumbent
banks reduce the number of loans they make and the assets they hold. The big bank does so
to strategically raise the interest rate. Fringe banks actually hold higher capital ratios since
they want to guard their charter value. This contrasts sharply with the perfectly competitive
case, where fringe banks lower their capital ratio when the regulation is removed.

7.4 Countercyclical Capital Requirements

Basel III calls for banks to maintain a “countercyclical” capital buffer of up to 2% of risk-
based Tier 1 capital. More specifically, a buffer of capital will be required only during
periods of credit expansion. Since in our model aggregate credit and aggregate productivity
are highly correlated, we implement this change in capital regulation by setting the minimum
capital requirement to 6% in periods where z = zb and 8% in periods where zg. Table 14
presents the model predictions.
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Table 14: Countercyclical Capital Requirements Counterfactual

Benchmark Countercyclical CR
(ϕ = 0.04) ({ϕ(zb) = 0.06, ϕ(zg) = 0.08}) ∆ (%)

Capital Ratio, Top 1% 4.23 25.13 494.65
Capital Ratio, Bottom 99% 13.10 12.66 -3.38
Exit/Entry Rate (%) 1.547 0.001 -99.94
Measure Banks, Bottom 99% 2.83 1.55 -45.33
Loan Mkt Sh., Bottom 99% (%) 53.93 26.47 -50.91
Securities-to-Assets Ratio, Top 1% 3.68 21.09 472.48
Securities-to-Assets Ratio, Bottom 99% 6.52 25.51 291.26
Loan Supply 0.229 0.206 -10.08
Ls to Int. Output Ratio (%) 89.47 89.53 0.07
Loan Interest Rate (%) 6.79 7.38 8.76
Borrower Project (%) 12.724 12.748 0.19
Default Frequency (%) 2.69 2.98 10.91
Avg. Markup 111.19 114.02 2.55
Int. Output 0.26 0.23 -10.11
Taxes/Output (%) 0.07 0.01 -87.57

We observe a large increase in the capital ratio of the big bank that, on average, moves
away from the minimum capital requirement constraint (even the one imposed in good
times). The average capital ratio for small banks decreases but this is because of a selection
effect. The distribution of small banks results in a larger fraction of high



here borrowers are ex-ante identical but ex-post heterogeneous. Private information about
borrower outside options with one-period lived borrowers results in pooling loan contracts
and one aggregate state dependent loan rate. In our previous work [13], our spatial framework
included regional specific shocks to borrower production technologies which were observable
and contractible generating heterogeneity in interest rates across different “type” borrowers.
To address the type of heterogeneity found in the Jimenez, et. al. data, we could include
heterogeneity in the success/failure across borrower projects. In particular, the success of a
borrower’s project, which occurs with probability ph(Rt, zt+1), could be independent across
borrowers of type h but depends on the borrower’s choice of technology Rt ≥ 0 at the
beginning of the period and an aggregate technology shock at the end of the period denoted
zt+1. Riskier borrowers would then be modeled, ceteris paribus, through the assumption that
pH(Rt, zt+1) < pL(Rt, zt+1) < where H stands for “High” risk and L stands for “Low” risk.
Banks would continue to pool the idiosyncratic uncertainty within a risk class, but depending
on informational assumptions associated with screening could offer separating contracts to
borrowers resulting in a distribution of loan rates much the same way as in Chatterjee, et.
al. [10].
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optimally across any possible action of the big bank ℓ. The statement of the auxiliary
problem is the same as for the fringe bank above except that the equation defining the
reaction function in equation (24) is given by Ld(rL, z) = ℓ + Lf(z, ab, Ā, M, ℓ).

The algorithm is given by:

1. Guess aggregate functions. That is, guess {hai }
5
i=0 and {hmi }

5
i=0 to get

log(A
′
) = ha0 + ha1 log(z) + ha2 log(ã

b) + ha3 log(A) + ha4 log(M) + ha5 log(z
′),

log(M ′) = hm0 + hm1 log(z) + hm2 log(ab) + hm3 log(A) + ha4 log(M) + ha5 log(z
′).

Make an initial guess of ℓf(Ā, δ̄, z, ab, Ā, M, ℓ) (i.e. the solution to the auxiliary prob-
lem) that determines the reaction function

Lf (z, ab, Ā, M, ℓ) = ℓf (Ā, δ̄, z, ab, Ā, M, ℓ)× M. (A.1.2)

2. Solve the dominant bank problem to obtain the big bank value function and decision
rules: V b, ℓb, Ab, db, Bb′ and xb.

3. Solve the problem of fringe banks to obtain the fringe bank value function and
decision rules: V f , ℓf , Af , df , Bf ′ and xf .

4. Using the solution to the fringe bank problem V f , solve the auxiliary problem to
obtain ℓf (Ā, δ̄, z, ab, Ā, M, ℓ).

5. Solve the entry problem of the fringe bank and big bank to obtain entry decision
rules.

6. Simulation

(a) Guess distribution of fringe banks over a and δ, ζ0(a, δ). Compute Ā0 =
∑

i,j aiζ0(ai, δj)

and and M0 =
∫ ∑

j ζ0(da, δj).

(b) Guess initial ab.

(c) Simulate a path of {zt}
T
t=0.

(d) Using decision rules for big banks obtain ℓbt , dbt , Ab
t , Bb

t and abt .

(e) Solve for value of Mt+1 such that the free entry condition for fringe banks is
satisfied with equality.

(f) Find ζt+1(a, δ) using decision rules for fringe banks. That is.

ζt+1(a
′, δ′) =

∑

i,j

(1− xf(ai, δj, zt, abt , At, Mt, zt+1))I{af (ai,δj ,zt,abt ,At,Mt,zt+1)=a′}
G(δ′, δ)ζ(ai, δj)

+G(δ′, δ)Et

∑

δ

I{a′=af,e(·))}Gf,e(δ)

Compute Āt+1 =
∑

i,j aiζt+1(ai, δj).
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(g) Continue for T periods and collect {abt , Āt, Mt}
T
t=1.

(h) Estimate equations (A.1.2) and (A.1.2) to obtain new aggregate functions.

(i) If the new aggregate functions are close enough to those used to solve the bank
problems and along the equilibrium path the distance between the solution to the
auxiliary problem (ℓf (Ā, δ̄, z, ab, Ā, M, ℓ)) and the average loan of fringe banks
(
∑

i,j ℓft ζt(ai, δj)/Mt) are close enough you are done. If not, return to 2.

Table 15 presents the aggregate functions in the benchmark economy.

Table 15: Equilibrium Aggregate Functions

Function log(Ā′) log(M ′)
cons. -0.753 0.012
log(z)

cons.


