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Abstract

Empirical studies of structural credit risk models so far are often based on calibra-
tion, rolling estimation, or regressions. This paper proposes a GMM-based method
that allows us to estimate model parameters and test model-implied restrictions in a
unified framework. We conduct a specification analysis of five representative struc-
tural models based on the proposed GMM procedure, using information from both
equity volatility and the term structure of single-name credit default swap (CDS)
spreads. Our test results strongly reject the Merton (1974) model and two diffusion-
based models with a flat default boundary. The other two models, one with jumps
and one with stationary leverage ratios, do improve the overall fit of CDS spreads
and equity volatility. However, all five models have difficulty capturing the dynamic
behavior of both equity volatility and CDS spreads, especially for investment-grade
names. On the other hand, these models have a much better ability to explain the
sensitivity of CDS spreads to equity returns.
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1. Introduction

A widely used approach to credit risk modeling is the so-called structural method, origi-

nated from Black and Scholes (1973) and Merton (1974). A growing literature has empiric-

ally examined the implications of structural models for various financial variables, such as

credit spreads (Eom, Helwege, and Huang, 2004), real default probabilities (Leland, 2004),

both spreads and default rates (Huang and Huang, 2012), hedge ratios (Schaefer and

Strebulaev, 2008), corporate bond return volatility (Bao and Pan, 2013), and prices of dif-

ferent (de facto) seniority levels (Bao and Hou, 2017). The main empirical methods used in

this literature include calibration, rolling estimation, and regressions. Although these meth-

ods are intuitive, easy to implement, and widely used, it is known that, from a statistical

point of view, they have some limitations.

In this study, we propose an alternative approach to testing structural credit risk models.

More specifically, we construct a specification test based on certain model-implied varia-

bles, such as credit spreads and equity volatility. By assuming that both equity and credit

markets are efficient and that the underlying structural model is correct, we obtain moment

restrictions on model parameters (e.g., asset volatility and default boundary). We then use

generalized method of moments (GMMs) of Hansen (1982) to conduct parameter estima-

tion as well as a specification analysis of the structural model. Three aspects of this GMM-

based specification test are worth noting. First, the test provides consistent econometric es-

timation of the model parameters. Second, the test allows us to conduct a precise inference

on whether the model is rejected or not in the data. Third, the test is based on the joint be-

havior of time-series of asset dynamics and cross-sectional pricing errors for structural

models.

For illustration, we apply the proposed approach to five affine, representative structural

models of default that incorporate various economic considerations. For each of the five

models, we construct its moment conditions using equity volatility and term structures of

single-name credit default swap (CDS) spreads. We then test whether all the restrictions of

the model are satisfied using the GMM, based on the model-implied CDS spreads and

equity volatility. By minimizing the effect of measurement error from using firm character-

istics, this test attributes the test results mostly to the specification error. Lastly, we exam-

ine the ability of the model to explain equity volatility, the CDS term structure, default

rates, sensitivity of CDS spreads to equity returns, etc.

For the purpose of this study, using CDS data has at least two advantages over using

corporate bond data. One is that CDS spread curves are readily available. The other is that

in general the CDS market is more liquid than the corporate bond market. We include

equity return volatility in moment conditions mainly because few empirical studies have

examined the implications of structural models for this second moment variable.1 In other

1 There is ample empirical evidence that individual equity volatility is time-varying and stochastic

(see, e.g., the survey articles by Bollerslev, Chou, and Kroner, 1992; Bollerslev, Engle, and Nelson,
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words, while equity volatility is usually used as an input in the empirical literature on struc-

tural models, this study treats equity volatility as an output of the models. Additionally, we

use the so-called “model-free” realized equity volatility in our empirical analysis. As it is

estimated using intraday high-frequency equity returns and involves no overlapping obser-

vations, realized volatility is more accurate than volatility estimates based on daily or

monthly returns. Moreover, the use of the latter estimates implies that structural models

are implicitly assumed to be able to fit perfectly the time series of equity volatility involving

overlapping observations. Lastly, focusing on realized equity volatility is consistent with

the evidence that volatility dynamics have a strong potential to help explain credit spreads

(e.g., Zhang, Zhou, and Zhu, 2009).

For reasons of tractability and comparison, we focus on the Merton (1974) model and

its four extensions with an exogenous default boundary in this study.2 The four barrier-

type models include the Black and Cox (1976) (BC) model with a flat default boundary, the

Longstaff and Schwartz (1995) (LS) model with stochastic interest rates, the Collin-

Dufresne and Goldstein (2001) (CDG) model with a stationary leverage, and the double-ex-

ponential jump diffusion (DEJD) model used in Huang and Huang (2002) and Kou

(2002).3

We test each of the five models using a sample of 93 industrial companies in the USA

that have a balanced panel of monthly realized equity volatility and CDS term structure

over the period January 2002–December 2004. As the main purpose of our empirical ana-

lysis is to illustrate the proposed specification test of structural models, the choice of the

sample period is not essential to the analysis. Nonetheless, this post dot-com bubble (and

also post the Enron collapse) period includes many major corporate defaults and “actions.”

On the other hand, relatively “quiet” compared with the recent financial crisis, this sample

period is less subject to illiquidity concern documented for the corporate bond market dur-

ing the financial crisis (Dick-Nielsen, Feldhütter, and Lando, 2012; Friewald, Jankowitsch,

and Subrahmanyam, 2012).

Our GMM-based specification tests strongly reject the Merton, BC, and LS models. The

DEJD model is found to significantly outperform these three models. The CDG model is

the best performing one among the five models: the model is not rejected by the GMM test

for more than half of the 93 companies in our sample. Nonetheless, the fact that both the

DEJD and CDG models are still rejected by a substantial number of firms in the sample

indicates that something is missing in these models.

The pricing error results from the five models provide similar evidence. On the one

hand, jumps and dynamic leverage help improve the model fit for investment-grade (IG)

and high-yield (HY) names, respectively. On the other hand, the five models all substantial-

ly underestimate both equity volatility and CDS spreads for IG names during 2002 when

credit risk is relatively high. In other words, these models have difficulty in capturing the

1994). This stylized fact should be taken into account in examining structural models that consider

equity to be a contingent claim on the underlying firm asset value.

2 To be more precise, the Merton model implemented in this study is the “extended Merton model”

tested in Eom, Helwege, and Huang (2004). A similar model is also studied in Bao and Pan (2013).

3 Kou (2002) develops the first DEJD-based equity option pricing model. Concurrently, Ramezani and

Zeng (2007) use the DEJD to model individual stock returns. Huang and Huang (2002, 2012) provide

the first application of the DEJD model in credit risk. Other examples using the DEJD-based struc-

tural model include Cremers, Driessen, and Maenhout (2008); Bao (2009); and Chen and Kou (2009).
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dynamic behavior of both equity volatility and CDS spreads, especially for IG names—even



(2016) focus on the cross-section of spreads implied by structural models. Examples of

studies that link CDS premiums with variables from structural models using a regression

analysis include Ericsson, Jacobs, and Oviedo (2009) and Zhang, Zhou, and Zhu (2009).

This paper differs from the aforementioned studies in at least two aspects. First, it pro-

poses and conducts a GMM-based specification test of structural models. In particular,

equity volatility is treated as an output variable in the proposed test. Second, as a result,

this study uses a different method for model parameter estimation. Consider, for example,

asset volatility (a driving force behind the firm default risk). Estimates of this important

parameter, used in the empirical analysis of structural models, include those calibrated to

historical equity volatility and equity value (Jones, Mason, and Rosenfeld, 1984), option-

implied equity volatilities (Hull, Nelken, and White, 2005), and default rates (Huang and

Huang, 2012); those estimated using historical equity and bond return volatilities (Schaefer

and Strebulaev, 2008); and those implied by corporate bond prices (Eom, Helwege, and

Huang, 2004) or by CDS spreads (Kelly, Manzo, and Palhares, 2016). In our analysis, asset

volatility is estimated using the GMM method with CDS term structures and realized equity

volatility.

Our paper also fits in the literature on the implications of structural models for second

moment variables (such as equity return volatility) as well as on their impact on credit risk.

For instance, Campbell and Taksler (2003) find that idiosyncratic equity volatility can ex-

plain a significant part of corporate bond yield spreads cross-sectionally. Huang and

Huang (2012) conjecture that a structural model with stochastic asset volatility and jumps

may help solve the credit spread puzzle. Huang (2005) considers an affine class of structural

models with both stochastic asset volatility and Lévy jumps. Based on regression analysis,

Zhang, Zhou, and Zhu (2009) provide empirical evidence that a stochastic asset volatility

model may improve the model performance. Perrakis and Zhong (2015) extend the Leland

and Toft (1996) model to allow for constant elasticity of variance. Kelly, Manzo, and

Palhares (2016) provide more recent evidence of stochastic asset volatility; see also Du,

Elkamhi, and Ericsson (2018) and McQuade (2018). In a closely related study, Bao and

Pan (2013) focus on corporate bond return volatility and document that the volatility

implied from the Merton (1974) model with stochastic interest rates underestimates sub-

stantially the observed corporate bond return volatility.

The literature on hedge ratios implied by structural models goes back to Schaefer and

Strebulaev (2008), who find that on average, the Merton model-implied sensitivity of a

firm’s corporate bond returns to its equity returns is not statistically different from the in-

sample empirically estimated hedge ratios. Bao and Hou (2017) investigate how a corpor-

ate bond’s position in its issuer’s maturity structure affects its sensitivity to the issuer’s

equity return. They show that both the direction and the magnitude of this de facto senior-

ity effect are consistent with what are implied from an extended Merton model. Huang and

Shi (2016) document that on average, the Merton model also captures the in-sample sensi-

tivity of corporate bond spreads to equity returns. In addition, they examine the actual

hedging performance of model-implied sensitivities of both corporate bond returns and

spreads, thereby providing an out-of-sample test of the explanatory power of hedging port-

folios. On the other hand, focusing on pairs of stock returns and CDS spread changes with

the same underlying over a short interval (e.g., 5 days), Kapadia and Pu (2012) find that

about 41% of stock returns are associated with CDS spread changes in the same direction,

as opposed to the prediction of the Merton model. This discrepancy is shown to reflect an

imperfect equity-credit market integration at short horizons. Huang, Rossi, and Wang
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(2015) find similar results based on pairs of stock and corporate bond returns and also pro-

vide evidence that equity market sentiment helps improve the equity-credit market integra-

tion, especially after the financial crisis.

In this study we examine not only hedge ratios of CDS spreads but also actual hedging

performance of structural models. In addition, we go beyond the Merton model.

As mentioned before, we use CDS data instead of corporate bond data in our empirical

analysis, partly to avoid the liquidity problem in the latter market. For evidence on corpor-

ate bond illiquidity, see Bao, Pan, and Wang (2011); Bongaerts, de Jong, and Driessen

(2017); Chen, Lesmond, and Wei (2007); Das and Hanouna (2009); Han and Zhou (2016);

Helwege, Huang, and Wang (2014); Longstaff, Mithal, and Neis (2005); Mahanti et al.

(2008); Schestag, Schuster, and Uhrig-Homburg (2016), among others. In addition, using

CDS term structures facilitates the implementation of the proposed GMM-based test—it is

known that data on term structures of corporate bond spreads are not easily available for

individual firms. For a recent survey on the CDS market, see Augustin et al. (2016).

Lastly, note that there is a large theoretical literature on structural credit risk modeling

(see, e.g., Huang and Huang, 2012; Sundaresan, 2013, and references therein), although

for tractability and comparison we consider only five structural models in our empirical

analysis. For example, the class of endogenous-default models, not considered in this paper,

includes those without strategic default, such as Geske (1977) and Leland and Toft (1996),

and strategic default models, such as Anderson and Sundaresan (1996), Mella-Barral and

Perraudin (1997), Acharya and Carpenter (2002), and Acharya et al. (2006, 2019).

Strategic default models of perpetual bonds are considered in Huang and Huang (2012).

Endogenous default models with finite maturity of Geske (1977) and Leland and Toft

(1996) are examined in Eom, Helwege, and Huang (2004). Another example not covered

in this paper is the Duffie and Lando (2001) model with incomplete accounting informa-

tion. Additionally, François and Morellec (2004) examine the impact of the US bankruptcy

procedure on risky debt prices. He and Xiong (2012) and He and Milbradt (2014) consider

both rollover risk and corporate bond illiquidity.

3. Affine Structural Credit Risk Models

In this section, we first review the five structural models to be tested in our specification

analysis. We then discuss the model implications for CDS spreads, equity volatility, and

sensitivities of CDS spreads to equity return.

3.1 Models

Although the five models differ in certain economic assumptions, they all belong to the class

of affine structural credit risk models and can be considered to be different specifications of

one single model.

Let V be the firm’s asset process, K the default boundary, and r the default-free interest

rate process. Assume that, under a risk-neutral measure Q,

dVt

Vt�
¼ rt � dð Þdt þ rvdW

Q
t þ d

XNQ
t

i¼1

Z
Q
i � 1

� �2
4

3
5� kQnQdt; (1)

d ln Kt ¼ j‘ �� � / rt � hrð Þ � ln Kt=Vtð Þ
� �

dt; (2)
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drt ¼ a� brtð Þdt þ rrdWQ
rt ; (3)

where d, rv, j‘, �, /, a, b, rr, and hr ¼ a=b are constants, and WQ and WQ
r are both one-

dimensional standard Brownian motion under the risk-neutral measure and are assumed to

have a constant correlation coefficient of q. In Equation (1), the process NQ is a Poisson

process with a constant intensity kQ > 0, the Z
Q
i s are i.i.d. random variables, and YQ �

ln ðZQ
1 Þ has a double-exponential distribution with a density given by

fYQ yð Þ ¼ pQ
u gQ

u e�gQ
u y1 y�0f g þ pQ

d gQ
d egQ

d
y1 y< 0f g: (4)

In Equation (4), parameters gQ
u ; g

Q
d > 0 and pQ

u ;p
Q
d � 0 are all constants, with

pQ
u þ p

Q
d ¼ 1. The mean percentage jump size nQ is given by

nQ ¼ EQ eYQ � 1
� �

¼ pQ
u gQ

u

gQ
u � 1

þ
pQ

d gQ
d

gQ
d þ 1

� 1: (5)

All five models are special cases of the general specification in Equations (1)–(5). For in-

stance, if the jump intensity is zero, then the asset process is a geometric Brownian motion.

This specification is used in the four diffusion models, namely, the models of Merton

(1974), BC, LS, and CDG.

Regarding the specification of the default boundary K, it is a point at the bond maturity

in the (original) Merton model and a discrete barrier in the extended Merton model. If j‘ is

set to be zero, then the default boundary is flat (a continuous barrier), an assumption made

in the BC, LS, and the DEJD models.

If a, b and rr in Equation (3) are zero, then the interest rate is constant. This leads to the

three one-factor models: the Merton, BC, and DEJD models. If both b and rr are greater

than zero, then we have the two-factor models, LS and CDG, where the dynamics of the

risk-free rate follow the Vasicek model specified in Equation (3). Additionally, the CDG

model assumes that j‘ > 0 and that the default boundary follows the mean-reverting speci-

fication in Equation (2).

Lastly, we obtain the DEJD model if the jump intensity is strictly positive, the risk-free

rate is constant, and the default boundary is flat.

We assume a constant recovery rate for comparison with other studies and also because

the CDS database that we use includes recovery rate estimates for each CDS contract.

3.2 Valuation of Single-Name CDS Contracts

Under each of the five structural models, it is straightforward to calculate the CDS spread.

Let Q(0, T) denote the survival probability over 0;Tð � under the T-forward measure. Then

the CDS spread of a T-year CDS contract is given by

cds 0;Tð Þ ¼
1� Rð ÞEQ e

�
Ð s

0
r uð Þdu

I s<Tf g

h i
P4T

i¼1 B 0;Tið ÞQ 0;Tið Þ=4
; (6)

where R is the recovery rate, B 0; �ð Þ the default-free discount function, s > 0 the default

time, I �f g the indicator function, and EQ �½ � the expectation under the risk-neutral measure.

To simplify the computation, we follow the literature to make the standard assumption
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that the settlement of the contract occurs on the next payment day. It then follows from

Equation (6) that

cds 0;Tð Þ ¼ 1� Rð ÞP4T
i¼1 B 0;Tið Þ Q 0;Ti�1ð Þ �Q 0;Tið Þ½ �P4T

i¼1 B 0;Tið ÞQ 0;Tið Þ=4
: (7)

As a result, the implementation of a structural model amounts to the calculation of the sur-

vival probability Q 0; �ð Þ. In the Merton (1974) and BC models, Q 0; �ð Þ has closed-form sol-

utions. The survival probabilities in the LS, CDG, and DEJD models do not have known

closed-form solutions but can be calculated numerically (see, e.g., Huang and Huang,

2012, for details).

In addition to CDS spreads, other model-implied credit market variables include CDS

spread changes, CDS volatilities, corporate bond return volatilities, etc. However, corpor-

ate bond volatilities have a sizable illiquidity component and CDS volatilities might also be

a bit high compared with fundamentals (Bao and Pan, 2013; Bao et al., 2015). Therefore,

given the purpose of this study, we do not consider these second moment variables in credit

markets in our empirical analysis.

3.3 Equity Market Variables

In this subsection we focus on more liquid equity market variables, which have received

relatively little attention in the empirical literature on structural models.

Consider equity return volatility first. As pointed out by Merton (1974), the function

relating the equity volatility and asset volatility is also model-dependent

rE tð Þ ¼ rv
Vt

Et

@Et

@Vt
; (8)

where Et is the time-t equity value, and Equation (8) applies to equity volatility of the con-

tinuous diffusion component for the DEJD model. Note that rE tð Þ is time-varying even if rv

is assumed to be constant.

Next, we consider comovements between CDS and equity, in order to better understand

their relative pricing as well as how to hedge their common exposures across markets.

Following Schaefer and Strebulaev (2008), we express the sensitivity of a CDS spread to the

underlying equity return in terms of their partial derivatives with respect to the underlying

firm value

Dcds
E;t �

@cds t;Tð Þ
@Et=Et

¼ @cds t;Tð Þ=@Vt

@Et=@Vt
Et: (9)

As illustrated in Sections 4.3 and 6.5, both @cds t;Tð Þ=@Vt and @Et=@Vt are functions of

@Q t; �ð Þ=@Vt. As such, once Q t; �ð Þ is known, Dcds
E;t can be calculated using Equation (9).

Unlike its counterpart for corporate bonds, the hedge ratio for a CDS contract is not the

same as its sensitivity to equity. Instead, the latter hedge ratio is defined as the dollar change

in the value of the CDS contract for each percentage change in the equity value

hcds
E;t �

@Vcds
t

@Et=Et
¼ @cds t;Tð Þ

@Et
EtD

cds
t ; (10)
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where Vcds
t denotes the time-t value of a CDS contract with a notional of $10 million, and

Dcds
t ¼

P4T
i¼1 B t;Tið ÞQ t;Tið Þ � 2:5 million is defined as the change in the mark to market

value (in million) for each unit of change in the quoted spread.5

4. A Specification Test of Structural Models

In this section, we propose a specification test of structural models under the GMM frame-

work of Hansen (1982). We first review the framework albeit using moment conditions

pertinent to structure models. We then discuss finite-sample properties of GMM. Lastly,

we focus on the implementation of the proposed specification test.

4.1 GMM Estimation of Structural Credit Risk Models

As mentioned before, the fundamental pricing relationship implied by a structural model

has implications for credit spreads, equity volatility, default probabilities, leverage, corpor-

ate bond returns, corporate bond return volatility, hedge ratios, etc. To evaluate the model,

we first estimate the model parameters that may include asset volatility, default boundary,

asset jump intensity, or dynamic leverage coefficients. Let h denote the vector of the model

parameters to be estimated and ĥ the estimated vector. We then take ĥ as given and examine

the pricing performance of the (estimated) model. Below we describe how to implement

this idea using GMM, following largely Cochrane (2009).

As noted before, we focus on model-implied CDS spreads and equity volatility in the

empirical analysis. Let cds t; t þ Tmð Þ and rE tð Þ be the time-t CDS spread with maturity

t þ Tm and equity volatility under a given structural model, specified in Equations (7) and

(8), respectively. Let fcds t; t þ Tmð Þ and frE tð Þ be the time-t observed counterparts of

cds t; t þ Tmð Þ and rE tð Þ. Consider the following vector of pricing errors (so-called moment

conditions):

f h; tð Þ ¼

fcds t; t þ T1ð Þ � cds t; t þ T1ð Þ
� � � � � � � � � � � � � � � � � �fcds t; t þ TMð Þ � cds t; t þ TMð ÞfrE tð Þ � rE tð Þ

2
6664

3
7775; (11)

where M denotes the number of CDS contracts with different maturities and the same

underlying firm. Under the null hypothesis that the model is correctly specified, we have

E f h; tð Þ½ � ¼ 0: (12)

To test the above hypothesis, we construct a time series of h; t ð fi º

http://www.cdsmodel.com


M > dim hð Þ � 1 as in our case; that is, there are more moment conditions than parameters.

In this case, we can pick h such that linear combinations of the moment conditions are

zero. This is a challenging task, however, especially given that both CDS spreads and equity

volatility are allowed to be observed with measurement errors in this analysis. As such, we

choose h to minimize a quadratic function of the pricing errors. Doing so leads to the so-

called GMM estimator:

ĥ ¼ arg min g h;Tð Þ0W Tð Þg h;Tð Þ; (14)

where W(T), a weighting matrix, denotes the asymptotic covariance matrix of g h;Tð Þ
(Hansen, 1982). With mild regularity conditions, ĥ is

ffiffiffiffi
T
p

-consistent and asymptotically

normally distributed, under the null hypothesis.

Furthermore, we implement the iterative GMM. That is, we begin with W(T) ¼ I, the

identity matrix, and estimate h. Next, we use a heteroscedasticity robust estimator for the

variance–covariance matrix W(T) that allows for autocorrelation in the errors (Newey and

West, 1987), and obtain a new ĥ. We repeat this procedure until it converges.

Given ĥ that minimizes the quadratic form specified in Equation (14), we can then

examine how well the candidate model fits. If the pricing errors are “large” under the ap-

propriately defined GMM metric, the candidate model specification will be rejected.

Formally, we conduct the following test:

JT ¼ T min
h

g h;Tð Þ0W Tð Þg h;Tð Þ � v2 Noið Þ; (15)

where Noi ¼Mþ 1� dim hð Þ, the degree of freedom of the v2-distribution, equals the num-

ber of overidentifying moment conditions. As a result, the GMM JT-test allows for an

omnibus test of the overidentifying restrictions.

4.2 Finite-Sample Properties of GMM

The JT-test specified in Equation (15) is an asymptotic test. Several studies have examined

finite-sample properties of GMM estimators applied to asset pricing models, although the

literature has focused mainly on consumption-based models and linear factor models in the

equity market (see, e.g., Hall, 2005, and references therein). For instance, Tauchen (1986)

considers the Hansen and Singleton (1982) consumption-based asset pricing model and

examines the behavior of the two-step GMM estimator using one asset in the estimation.

He finds that the bias of the estimator tends to increase as the degree of overidentification

(Noi) increases but the empirical sizes of the JT-test tend to be close to the asymptotic value.

Kocherlakota (1990) extends the analysis of Tauchen (1986) to multiple assets and his find-

ings suggest that the iterated GMM estimator considerably improves the finite-sample be-

havior of GMM. Using predictive regression models for stock returns, Ferson and Foerster

(1994) find that while sizes of the two-step GMM-based JT statistics are often too large

with finite samples, the iterated GMM approach has superior finite-sample properties.

Hansen, Heaton, and Yaron (1996) consider a consumption-based asset pricing model

where the representative agent’s utility function allows for time non-separability. They find

that when the number of the overidentifying restrictions is high (five), the asymptotic the-

ory is far from the finite-sample property. Lettau and Ludvigson (2001) argue that the one-

stage GMM is more appropriate than the two-stage GMM with an estimated weighting

matrix in the application pursued in their study—where the time-series sample is small rela-

tive to the cross-sectional sample size.
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In our specification analysis, we test a given candidate model firm by firm. Based on the

insights from the aforementioned studies, in order to mitigate the potential small sample

problems in our tests, we need to keep the degree of overidentification minimal. As dis-

cussed in Section 4.3, for a given firm, the number of parameters to be estimated using the

GMM ranges from one for the Merton model to four for the CDG model. As such, we use

four CDS contracts and realized equity volatility (i.e., five moment conditions) with

36 monthly observations in each GMM test. That is, the degree of overidentification ranges

from one in CDG to four in Merton in our tests. As a robustness check, we also test the

Merton model using only one CDS contract and realized equity volatility such that the de-

gree of overidentification is one. The number of time-series observations relative to the

number of moment conditions is reasonably large, given that the latter is no more than five

in our tests. Additionally, we implement the iterative GMM. Taken together, the findings

of the aforementioned studies based on the equity market suggest that small sample prob-

lems are not a major concern in our GMM tests.

4.3 Implementation

In this subsection, we discuss the implementation of the proposed GMM specification test.
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5.1 CDS Spreads

We use CDS data from Markit, a comprehensive data source that assembles a network of

industry-leading partners who contribute information across several thousand credits on a

daily basis. Based on the contributed quotes, Markit creates daily composite quotes for

each CDS contract, which must pass the stale data test, flat curve test, and outlying data

test. Together with the pricing information, the Markit data set also reports average recov-

ery rates used by data contributors in pricing each CDS contract. In addition, an average of

Moody’s and S&P ratings is also included.

We begin with collecting all CDS quotes written on US entities (sovereign entities

excluded) and denominated in US dollars. Following previous empirical studies on struc-

tural models (e.g., Eom, Helwege, and Huang, 2004), we exclude financial and utility sec-

tors from the sample. In addition, we focus on senior unsecured CDS contracts and exclude

the subordinated class of CDS contracts. Furthermore, we limit our sample to CDS con-

tracts with modified restructuring clauses, as they are the most traded in the US market.

For the purpose of GMM estimation, we restrict the sample to those CDS names with at



which converges to the integrated or average variance during period t. For a jump-diffusion

model, the continuous component of equity volatility (squared) can be estimated with the

so-called “bi-power variation” as follows:

frE tð Þ2 � p
2

1=D
1=D� 1

X1=D
i¼2

jrs
t;i�1jjrs

t;ij : (18)

As shown by Barndorff-Nielsen and Shephard (2004), such an estimator of realized equity

volatility is robust to the presence of rare and large jumps.

Realized equity volatilities used in our analysis are estimated using TAQ data. The

monthly realized variance is the sum of daily realized variances, constructed from the

squares of intraday 5-min returns. Then, monthly realized volatility is just the square-root

of the annualized monthly realized variance.

5.3 Capital Structure and Asset Payout

Assets and liabilities are key variables in evaluating structural models of credit risk. The

accounting information is obtained from Compustat on a quarterly basis and assigned to

each month within the quarter. We calculate the firm asset as the sum of total liabilities

plus market equity, where the market equity is obtained from the monthly CRSP data on

shares outstanding and equity prices. Leverage ratio is estimated by the ratio of total liabil-

ities to the firm’s assets. The asset payout ratio is estimated by the weighted average of the

interest expense and dividend payout. Both ratios are reported as annualized percentages.

5.4 Risk-Free Interest Rates

Default-free interest rates used in the calculation of CDS spreads are estimated from the 3-

month LIBOR and interest rate swaps with maturities of 1, 2, 3, 5, 7, and 10 years. These

data are available from the Federal Reserve H.15 Release.

5.5 Summary Statistics

Table I provides summary statistics on firm characteristics and CDS spreads across either

rating categories (panel A) or sectors (panel B). As can be seen from panel A1, our sample is

concentrated in A-rated (25) and BBB firms (45), which account for 75% of the full sample,

reflecting the fact that contracts on IG names dominate the CDS market. In terms of the

average over both the time-series and cross-section in our sample, the 5-year CDS spread is

144 bps with a standard deviation of 3.18%, equity volatility 38.40% (annualized), the le-

verage ratio 48.34%, asset payout ratio 2.14%, and the quoted recovery rate 40.30%. As

expected, the CDS spread, equity volatility, and leverage ratio all increase as the credit rat-

ing deteriorates. The recovery rate largely decreases as the rating deteriorates but has low

variations.

Figure 1 plots both the term structure (from 1 to 10 years) and time evolution of the

average CDS spreads over the full sample period January 2002–December 2004. Clearly,

the average spreads show large variations and have a peak around late 2002.

Figure 2 plots both the 5-year CDS spreads (top panel) and equity volatility (bottom

panel) by three different rating groups (AAA–A, BBB, and BB–CCC) over the full sample

period. An inspection of the figure indicates that CDS spreads and equity volatilities appear

to move together sometime during market turmoils but are only loosely related during quiet

periods. The 5-year CDS spreads clearly have a peak in late 2002 across all three rating
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Table I. Summary statistics on single-name corporate CDS spreads

This table reports summary statistics on the full sample of 93 single-name corporate CDS con-

tracts, by either credit ratings (Panel A) or sectors (Panel B). Rating is the average of Moody’s

and Standard and Poor’s ratings. Equity volatility is estimated using 5-min intraday returns.

Leverage ratio is total liabilities divided by the total asset (total liability plus market equity).

Asset payout ratio is the weighted average of dividend payout and interest expense over the



groups, although the BB–CCC group has another spike in late 2004. On the other hand,

equity volatility is much higher in 2002 than the later part of the sample period and, in par-

ticular, has two huge spikes in 2002. There is clear evidence that equity volatility and credit

spreads are intimately related (Campbell and Taksler, 2003), and the linkage appears to be

nonlinear in nature (Zhang, Zhou, and Zhu, 2009). In the next section, we examine

whether structural models can capture the dynamics of CDS spreads and equity volatility in

our sample, among other things.

Table I. Continued

Panel B1: Firm characteristics by sectors

Sector Sample firms Equity

volatility (%)

Leverage

ratio (%)

Asset

payout (%)

Recovery

rate (%)
Number Percentage

Communications 6 6.45 48.72 42.93 1.99 40.14

Consumer cyclical 32 34.41 38.95 48.56 2.01 40.45

Consumer staple 14 15.05 33.77 41.68 2.24 40.87

Energy 8 8.60 39.93 53.89 2.47 40.05

Industrial 18 19.35 40.24 53.90 2.01 39.90

Materials 11 11.83 32.85 49.34 2.73 41.35

Technology 4 4.30 45.22 40.20 1.29 38.95

Overall 93 100.00 38.68 48.39 2.14 40.39

Panel B2: Average CDS spreads (%) by CDS maturities and sectors

Maturity of CDS

1-Year 2-Year 3-Year 5-Year 7-Year 10-Year

Communications 2.04 1.99 2.09 2.23 2.16 2.10

Consumer cyclical 1.57 1.58 1.58 1.61 1.62 1.66

Consumer staple 0.74 0.81 0.86 0.92 0.94 0.98

Energy 1.58 1.38 1.53 1.43 1.47 1.48

Industrial 1.29 1.38 1.41 1.46 1.48 1.53

Materials 0.92 0.96 1.03 1.10 1.14 1.20

Technology 1.38 1.43 1.48 1.48 1.51 1.52

Overall 1.34 1.36 1.40 1.44 1.45 1.49

Panel B3: Standard deviation of CDS spreads (%) by CDS maturities and sectors

Communications 4.82 4.13 4.58 4.74 4.33 3.80

Consumer cyclical 6.19 5.25 4.65 4.06 3.85 3.65

Consumer staple 2.08 2.21 2.18 2.10 2.02 1.92

Energy 5.60 3.66 4.80 3.32 3.45 3.14

Industrial 2.36 2.54 2.34 2.16 2.09 2.07

Materials 1.46 1.42 1.43 1.39 1.38 1.34

Technology 2.20 2.17 2.12 1.82 1.74 1.59

Overall 4.43 3.78 3.62 3.18 3.04 2.85
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6. Empirical Results

In this section, we present the results from our empirical analysis. We consider first the pro-

posed GMM specification test of the five candidate models. We then examine the GMM

estimates of model parameters and the pricing performance of the models. We also provide

diagnostics on model specifications. Lastly, we focus on the model implications for hedge

ratios and default probabilities.

6.1 GMM Specification Test

Our GMM specification test is based on the model-implied pricing relationship for CDS

spreads and equity volatility. Table II reports the test results and, in particular, the number

of firms where each of the five candidate models is not rejected, for the whole sample as

well as subsamples by either credit ratings (panel A) or sectors (panel B). Note from the

table that at the conservative 10% significance level, the number of firms (out of 93) where
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Time−Series and Term Structure of Average CDS Spreads (%)

Figure 1. Average CDS spreads over the full sample period. This figure plots the average CDS spreads

(in annualized percentage) of 93 firms in the full sample with maturities ranging from 1 to 10 years

from January 2002 to December 2004.
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the given model is not rejected is 0, 1, 2, 13, and 52 for the Merton, BC, LS, DEJD, and

CDG models, respectively. At the 1% significance level, none of the five models have a re-

jection rate of 100% and the number of firms with the model not being rejected increases

to 5, 6, 12, 42, and 72 for the Merton, BC, LS, DEJD, and CDG models, respectively.

Judged by these results on the number of firms where each of the five models is not rejected,

the ranking of these models is as follows:

Merton 
 Black–Cox < LS� DEJD < CDG:

Notably, the two more recent models—the DEJD and CDG models—outperform the other

three models. This finding implies that both jumps and time-varying leverage improve
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Average 5−Year CDS Spreads by Rating Groups (%)
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Average Equity Volatility by Rating Groups (%)
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Figure 2. Time series of CDS spreads and equity volatility. This figure plots the average 5-year CDS

spread (top panel) and the average realized equity volatility (bottom panel) by rating groups (A–AAA,

BBB, and CCC–BB) over the period January 2002–December 2004. Realized equity volatility is esti-

mated using 5-min intraday stock return data.
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Note also from panel B that the median K/F for IG names is higher than the median for

HY names across the three aforementioned models. In particular, in the LS model while the

median for IG names is greater than one, the median for HY names is below one. Similar

results obtain when we plot the estimated K/F against the observed leverage ratio F=Vt as in
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To be more specific, given a candidate model and its estimated model parameters, in

each month we calculate the model-implied equity volatility and CDS spreads for each ma-

turity including 2 and 7 years. Note that while 2- and 7-year contracts are too sparse to be

included in estimation, they are still useful to be included in pricing error evaluation. Then

we compute the simple difference, absolute difference, and percentage difference between

the model-implied and observed ones, for every name in the sample. Next, we calculate the

mean of the pooled pricing errors.

Table IV reports the pricing errors on CDS spreads for the full sample as well as by each

rating group and sector. In terms of pricing errors on the spread level (panel A), the overall

average pricing error is negative except for the Merton model. This is to say that on aver-

age, the Merton model overestimate the CDS spread while the other four models underesti-

mate the spreads.8 Specifically, the average pricing error is –0.18% for CDG, –0.44% for

DEJD, –0.71% for LS, and –0.91% for BC. Thus, the CDG and DEJD models underfit the

CDS spread less than the BC and LS models.

Note that the overall positive pricing error of the Merton model is mainly driven by the

four B-rated names and the single CCC firm (Delta Air Lines) in the sample. To see that, re-

call first from Appendix Table AI that these five names all have high leverage and high

equity volatility: Delta Air has an equity volatility of 81.9% and a leverage of 93.9%; the

average equity volatility and leverage on the four B-rated names are 83.2% and 72.6%,

respectively. It is known that the Merton model-implied short-term credit spread with high

leverage and equity volatility can be very high (Merton, 1974), consist with our panel C of

Figure 4. As a result, the Merton pricing error on these five names is large as reported in

panel A of Table IV. Next, note from panel A that the average pricing error for IG names is

negative, regardless of the structural models considered; that is, on average, all five candi-

date models underestimate the CDS spread on IG names, consistent with the findings of

Bao (2009) using the BC and DEJD models as well as those of Eom, Helwege, and Huang

(2004) and Huang and Huang (2012) based on IG bonds.

In terms of absolute pricing performance (panel B), the BC and LS models outperform

the Merton model but underperform the DEJD and CDG models in both the full sample

and each of the seven credit-rating groups (except for the single CCC firm where the BC

model slightly outperforms CDG). Furthermore, between the two more recent models, the

DEJD model performs relatively better for the IG names while the CDG model does better

for the HY names (except for the single CCC firm). These results differ from the findings of

Eom, Helwege, and Huang (2004) based on corporate bond data that richer model specifi-

cations do not necessarily have lower pricing errors.

Results on percentage pricing errors, reported in panel C, indicate that on average, the

CDG model overestimates the CDS spread while the other four models underestimate

the spread. Among the IG names, the Merton, BS, LS, and DEJD models all underestimate the

spread substantially in each of the four rating categories, except that the DEJD model overesti-

mates the single AAA name’s spread. On the other hand, the CDG model overestimates the

spread for three IG-rated subgroups. These results indicate that although the newer models

(DEJD and CDG) do improve upon the older ones (Merton, BC and LS), the CDG model can

raise the spread too much for names in certain rating groups in terms of the percentage pricing

errors.

8 Predescu (2005) also observes that combining equity price and CDS spreads would make the

Merton model overfit the spread.
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Figure 4. Observed and model-implied CDS term structures. This figure plots the time-series average

of both observed and model-implied CDS term structures, by three rating groups, over the period

January 2002–December 2004. The structural models considered include Merton (1974), BC, LS, CDG,

and the DEJD model used in Huang and Huang (2002).
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Panel D reports the results on absolute percentage pricing errors. The ranking of the five

models is largely the same as before: the DEJD and CDG models outperform the BC and LS

models, both of which outperform the Merton model. Nonetheless, the accuracy of all five

models is still a problem: the average absolute percentage pricing error ranges from 45.6%

for the DEJD model to 114.3% for the Merton model. This finding echos a similar one in

the corporate bond market documented in Eom, Helwege, and Huang (2004).

Table V presents the results on fitting errors of equity volatility. Broadly speaking, they

display similar patterns to those on the CDS spreads (Table IV). For instance, consider

panel A. Note that for each model the overall sign of fitting errors on equity volatility is

consistent with those on CDS spreads, though the magnitude of volatility fitting errors is

generally larger. To some extent, this result is not surprising given that credit spreads in-

crease with the asset volatility in the candidate models. Note also that the Merton fitting

error is positive overall mainly because of overfitting in the four B-rated and one CCC-

rated bonds. In fact, the model underfits equity volatility of AA and A names substantially.

The other four models also underfit equity volatility of IG names, except for the single

AAA-rated name in the case of the BC, LS, and DEJD models and for the AA-rated names

in the case of the BC model.

In terms of absolute fitting performance (panel B), on average, the DEJD and CDG

models have the lowest errors (11.61% and 11.87%, respectively), while the Merton model

has the highest one (26.11%). The BC model slightly underperforms CDG but outperforms

LS substantially. Between the two more recent models, on average, the DEJD model under-

performs CDG in IG names but outperforms CDG in HY names.

In terms of percentage fitting errors on equity volatility (panel C), the overall sign is con-

sistent with those on CDS spreads for the BC, DEJD, and CDG models. This is not the case,

however, for the Merton and LS models, which both have an overall positive volatility fit-

ting error. Additionally, note that the magnitude of overall percentage fitting errors on

equity volatility is much lower than its counterpart on spreads, because the level of equity

volatility is typically higher than the CDS spread.

The ranking of the five models based on the overall absolute percentage fitting error on

equity volatility (panel D) is the same as that based on the overall absolute fitting error on

equity volatility (panel B) except that the BC and CDG models switch their places. In add-

ition, for each of the seven different rating groups, the DEJD model outperforms the CDG

model except for the single AAA-rated name.

To summarize, the results of this section provide evidence that the two more recent

models (the DEJD and CDG models) outperform the three older ones (the Merton, BC, and

LS models) in fitting CDS spreads as well as equity volatility. Nonetheless, we find that on

average, the five structural models all underestimate CDS spreads as well as equity volatility

for IG names. In addition, the accuracy of all five models in fitting either the CDS spread or

equity volatility is low.

6.4 Further Diagnostics on Model Specifications

In this subsection, we examine the average CDS term structure as well as the time series of

the 5-year CDS spread and equity volatility. Doing so can provide further insights on model

specification errors and consequently on how to improve the models.

Figure 4 plots the sample average of the CDS term structure from 1 to 10 years from the

observed data (in solid blue) as well as each of the five candidate models, for three different
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credit-rating groups, AAA–A (top panel), BBB (middle), and BB–CCC (bottom). A few

observations are worth mentioning here: (1) all five models underfit the average term struc-

ture except for the Merton model that overfits the short end for the BBB and BB–CCC

groups; (2) the best-fitting model, CDG, fits the BBB average term structure almost perfect-

ly and underfits slightly for the AAA–A group; (3) the DEJD model is the second best; (4)

the BC model largely captures the shape of the average term structure but underfits its level

considerably; (5) the LS model slightly underperforms the BC model for IG names with

short maturity but outperforms the latter for HY names; (6) the Merton model underfits

the AAA–A curve substantially, especially in the long end but underfits the long end of the

BBB and BB–CCC curves less than the BC and LS models.

Overall, both the CDG and DEJD models match the shape of the average term structure

of CDS spreads well, especially for IG names. The two models, however, still underfit the

level of the curve, although the CDG model-implied curve is much closer to the observed

one than the DEJD-implied curve is.

Figure 5 plots the observed 5-year CDS spread against the five model-implied ones. For

the HY names (the BB–CCC group), all models seem to capture the time-variations of the

5-year CDS spread reasonably well, although the DEJD and CDG models seem to be the

best two. Furthermore, while the DEJD model outperforms the CDG mode in the first third

of the sample period, the latter outperforms the former in the last third of the sample

period. For the IG names (the AAA–A and BBB groups), most models completely miss the

dynamics of the CDS spread, especially for the first third of the sample, when the risk-free

rate remains as low as 1%. Interestingly, even the best-fitting CDG model that can get the

average level right is not able to describe the evolution of the CDS spread. This finding sug-

gests that a time-varying factor in addition to the interest rate and leverage ratio—like sto-

chastic asset volatility—may be needed in order for a structural model to fully capture the

temporal changes in CDS spreads for IG names.

Figure 6 reports the average model-implied and realized equity volatilities over the full

sample period, for three different credit-rating groups, AAA–A (top panel), BBB (middle),

and BB–CCC (bottom). Note that for both IG groups, all five models miss completely the

volatility spikes during the early sample period. Moreover, every model generates a nearly

constant equity volatility while the observed equity volatility varies substantially over time.

For the HY group, the model performance is relatively better. In particular, the Merton

model captures the volatility spikes to some degree and the LS and DEJD models reason-

ably fit the second half of the volatility time series. However, these results are mainly driven

by the unrealistically high model-implied volatility for the single CCC-rated name. Overall,

Figure 6 provides evidence suggesting that without time varying asset volatility, the struc-

tural models have difficulty replicating the observed equity volatility dynamics, especially

for IG names.

Figure 7 plots the initial spot log leverage ratio log Kt=Vtð Þ and the long-run mean of

risk-neutral log leverage ratio implied from the CDG model, for three different credit-

rating groups, AAA–A (top panel), BBB (middle), and BB–CCC (bottom). It is clear from

the figure that these two leverages are fairly close to each other for the HY group (the

CCC–BB names). On the other hand, for the BBB names the observed leverage is signifi-

cantly lower than its risk-neutral counterpart, and the difference between the risk-neutral

and observed leverages is even more dramatic for the AAA–A names. This finding mirrors

the stylized fact that highly profitable firms may opt to borrow little or no debt (Chen and
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Zhao, 2006; Strebulaev and Yang, 2013). Such a puzzle may be worth further

investigation.

In sum, dynamic leverage ratios and, to a lesser degree, jumps in asset returns help

match CDS spreads and equity volatility better. However, something else is still missing in

the five candidate models as they all fail to adequately capture the dynamic behavior of

CDS spreads and equity volatility, especially for the IG names. Our findings suggest that
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Figure 5. Observed and model-implied 5-year CDS spreads. This figure plots observed and model-

implied 5-year CDS spreads, for three credit rating groups, over the period January 2002–December

2004. The structural models considered include Merton (1974), BC, LS, CDG, and the DEJD model

used in Huang and Huang (2002).

78 J.-Z. Huang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020



incorporating a stochastic asset volatility may improve the performance of the existing

structural models.

6.5 Model-Implied Equity Sensitivities of CDS Spreads

The implications of the estimated structural models go beyond CDS spreads and equity vol-

atilities, the variables included as moment conditions and examined in Sections 6.3 and 6.4.
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Figure 6. Observed and model-implied equity volatilities. This figure plots realized volatility (estimated

using 5-min intraday stock returns) and five model-implied equity volatilities, for three credit rating

groups, over the period January 2002–December 2004. The five structural models are Merton (1974),

BC, LS, CDG, and the DEJD model used in Huang and Huang (2002).
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Figure 7. Observed spot leverage and the long-run mean of risk-neutral leverage. This figure plots the

observed spot leverage (debt/asset) and the model-implied long-run mean of the risk-neutral leverage,

for three rating groups, over the period January 2002–December 2004. The long-run mean of the risk-

neutral leverage is estimated using the CDG model.
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In this subsection, we focus on one firm-specific variable not included in the moment condi-

tions, the sensitivity of 5-year CDS spreads to equity returns discussed in Section 3.3.

6.5.a. Regression tests of model-implied sensitivities

We first test the accuracy of model-implied sensitivities in a linear regression setting.

Consider the following regression model:

Dfcds t; t þ 5ð Þi ¼ ai þ b1;iDr10y
f ;t þ b2;iD

cds
E;i;trx

E
i;t þ uit; (19)

where Dfcds t; t þ 5ð Þi denotes the monthly change in the observed 5-year CDS spread for

firm i; r10y
f ;t the month-t 10-year zero yield extracted from swap rates and included to control

for changes in the “risk-free” term structure; rxE
i;t firm-i’s monthly equity return minus the

one-month LIBOR; and Dcds
E;i;t is the model-implied sensitivity of the CDS spread to equity

return for firm i as specified in Equation (9)9 and is calculated using the parameter vector ĥ

estimated with the full sample (see Section 6.2)—for example, ĥ ¼ r̂vð Þ for the Merton

model (Section 4.3). If the model accurately describes the equity sensitivity of CDS spreads,

b2;i should be equal to one. On the other hand, if the model consistently underpredicts the

sensitivity, then b2;i is expected to be significantly greater than one.

As such, we can test the null hypothesis (H1) that b2;i ¼ 1 on a firm-by-firm basis and

report the number of firms for which H1 is not rejected in our sample. In the analysis that

follows, we conduct the test based on a modified Equation (19) with a smoothed Dcds
E;i;t:

Dfcds t; t þ 5ð Þi ¼ ai þ b1;iDr10y
f ;t þ b2;i

�D
cds
E;i;trx

E
i;t þ uit; (20)

where �D
cds
E;i;t denotes the month-t average of model-implied sensitivities across firms in the

same rating or industry category as firm i. This is because using a smoothed model-implied

hedge ratio can help reduce the noise in the firm-by-firm estimates of model parameters

(see, e.g., Schaefer and Strebulaev, 2008).10

Table VI reports the results from regression in Equation (20) where �D
cds
E;i;t used is either

by ratings (panel A) or by industries (panel B). Consider panel A first. Note that �b2;i, the

average of the estimates of b2;i over the whole sample, is 0.74 and 0.76 for the BC and LS

models, respectively, but �b2;i is around one for the other three models. An inspection of the

means of b̂2;i in each rating category finds that the means are below one regardless of the

9 In the implementation of Equation (9),
@cdsðt ;tþ5Þi

@Vi ;t
is calculated using Equation (7) and

@Ei ;t
@Vi ;t

is set to

one minus the delta of a 5-year par bond (see footnote 6), an approximation except for the Merton

model. In an untabulated analysis using the BC model, we find that including the expected bank-

ruptcy cost in
@Ei ;t
@Vi ;t

has little impact on the model’s performance in fitting both CDS spreads and

equity volatility as well as in hedging CDS.

10 The formulation of H1 is in the spirit of Schaefer and Strebulaev (2008) and Huang and Shi (2016),

who examine the Merton-implied equity sensitivities of corporate bond returns and spreads, re-

spectively; however, we conduct our hypothesis test slightly differently due to the size of our sam-

ple. Those two studies focus on the averages of regression coefficients (counterparts of the b2;i

estimates here) across bonds in their samples and test whether the mean slope coefficients are

close to one. In our case, inferences based on the mean of ninety-three estimates of b2;i may not

be reliable—given the limited effects of the smoothing in those rating categories or sectors that

each include less than ten firms. Still, the means of b2;i estimates over the full sample as well as

each rating category or sector are reported in Table VI for completeness.
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rating categories for both the BC and LS models. This result indicates that these two models

consistently overpredict the equity sensitivity of CDS spreads. On the other hand, for the

Merton and DEJD models, the average b̂2;i is below or very close to one for IG names but is

greater than one for HY names—and, in fact, the pair of the coefficients for B and CCC

names are (2.90, 3.90) and (2.52, 3.49) for the Merton and DEJD models, respectively. The

variation in the average b2;i across different rating categories is much less for the CDG

model, with the average b2;i ranging from 0.73 for AA names to 1.25 for AAA- or B-rated

names.

For how many firms out of 93 the null hypothesis H1 is not rejected (for a given model),

based on the t-statistics using the Newey–West standard error estimator? As indicated in

panel A, the answer is 72 (Merton), 12 (BC), 18 (LS), 69 (DEJD), and 76 (CDG), at the 5%

significance level. Recall from Table II that the number of firms where a given model is not

rejected by the GMM-based specification test at the 5% significance level is 1 (Merton), 1

(BC), 6 (LS), 20 (DEJD), and 63 (CDG). That is, all five models capture the sensitivity of

CDS spreads to equity much better than they capture CDS spreads and equity volatility.

This is true especially for the Merton model.

Regression R2, shown in the last row of panel A, is 30.4% for Merton, 26.3% for BC,

28.6% for LS, 30.2% for DEJD, and 18.7% for CDG. Note that the R2 generated by the

CDG model is the lowest among the five models—and even lower than its counterpart

from the otherwise same regression excluding �D
cds
E;i;t (untabulated). How to reconcile this re-

sult with the evidence that the number of firms where H1 is not rejected is the highest under

CDG? One explanation is that the t-test conducted at the firm level may fail to reject the

null hypothesis even if the point estimate of the slope coefficient substantially deviates from

unity, due to the large standard error estimated using the Newey–West adjustment.

Therefore, although among the five candidate models the CDG model has the largest num-

ber of non-rejected firms, the model does not necessarily make the most accurate prediction

of hedge ratios.

The results reported in panel B of Table VI are largely similar to those in panel A.

For example, the means of estimated b2;i in every sector are 0.70 for the BC model

and below 0.76 for LS. On the other hand, the means are much closer to one for the other

three models. Furthermore, the Merton-based mean estimate is the largest among the five

model-based mean estimates for three sectors (out of seven), including 1.33 for

“communication,” 0.92 for “materials,” and 1.43 for “technology,” and the second largest

for the remaining four sectors. In terms of the regression R2, it is 28.1% for Merton, 11.9%

for BC, 13.2% for LS, 30.0% for DEJD, and 18.6% for CDG. Note that although the R2

under CDG is not the lowest here, it is still much lower than the R2-value under either

Merton or DEJD.

To summarize, while the results of the test of Hypothesis H1 favor the DEJD, Merton,

and CDG models (in ascending order), the first two rank notably higher than CDG based

on the regression R2. As a low R2-value suggests that the underlying model has difficulty in

replicating the variation in CDS contract values effectively, the actual hedging performance

of the same model may also be affected negatively. As such, the Merton and DEJD models

may provide better hedging performance than does the CDG model. Furthermore, given

that the Merton-implied sensitivity is more reasonable than the DEJD-implied one (e.g., for

B and CCC names), the Merton model may provide better hedging performance than the

DEJD model. In the subsection that follows we investigate which of the five candidate mod-

els delivers the most robust hedging performance.
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6.5.b. Evidence on hedging effectiveness

Suppose that in month t, an investor hedges a single-name CDS with the underlying equity

and makes no additional trades until the end of tþ1.11 At tþ1, the position is closed out

and the hedging error over the 1-month period is computed as

�t ¼ Vcds
tþ1 � hcds

E;t r
E
tþ1;

where the hedge ratio hcds
E;t is as defined in Equation (10), and we make use of the fact that a

CDS contract is worth close to zero when it is first initiated (Vcds
t ¼ 0).

Assume that the investor’s objective is to minimize the monthly volatility of the hedged

single-name CDS. Following Bertsimas, Kogan, and Lo (2000), we use root-mean-squared

hedging error (RMSE) as the summary statistic for hedging errors over our sample period.

Note that the RMSE is equal to the standard deviation when the mean hedging error is

zero. Let RMSEMh be the RMSE when model M-implied hedge ratios are used. For com-

parison, we also compute the RMSE of the short CDS position when the CDS contract is

not hedged (hcds
E;t ¼ 0). Denote this RMSE by RMSEu. One measure of hedging effectiveness

calculates the reduction in the RMSE as a result of hedging and is given by

HEff ¼ 1� RMSEMh
RMSEu

: (21)

Note that if hedge ratios implied from a particular model substantially increase volatility

relative to the unhedged position, then HEff is negative.

Panel A of Table VII presents the results on the hedging performance of firm-specific

hedge ratios (i.e., hedge ratios not smoothed over a given rating group or sector) under

each of the five candidate models. Surprisingly, among these models the Merton HEff is the

highest (7.0%), indicating that the Merton-implied hedge ratio achieves the largest reduc-

tion in the RMSE. The CDG model also has a significantly positive overall HEff (3.5%). In

contrast, the overall HEff is highly negative for both the BC and LS models, implying that

the hedged position—using hedge ratios derived from the two models—is much more vola-

tile than the unhedged position. The overall negative HEff for the DEJD model has a great

deal to do with the BB-rated names in the sample.

Consider next the hedging performance of the Merton and CDG models by credit rat-

ings or sectors. Note that the Merton HEff is significantly positive for BB and B names only

and that the CDG HEff is significantly positive for BB names only. On the other hand, out

of the seven different sectors, the Merton HEff is significantly positive for six of them and

the CDG HEff for two. These results together indicate that the Merton hedge ratio is more

effective by sectors than by credit ratings.

Why is the overall HEff so negative for the BC and LS models? One possible reason is

that the use of unsmoothed hedge ratios leads to dramatic increases in volatility.0 0 5.94Indeed, we

observe from Table VI that for those rating or sector groups with a larger number of firms,

the (rating- or sector-specific) average hedge ratios tend to be more aligned with their em-

pirical counterparts. This result suggests that smoothing within a credit rating or industry

11 In an untabulated analysis, we also examine the performance of hedging CDS portfolio positions,

with the portfolios formed based on the rating/sector category. These results are not reported as

the relative performance among structural models does not change; as expected, the absolute

hedging effectiveness increases because the hedging loss from one single name in the portfolio

may be offset by the hedging gain from another.
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group could lower the impact of uncertainty in the firm-by-firm estimation, as advocated

by Schaefer and Strebulaev (2008). As such, using smoothed hedge ratios (i.e., either rating-

or sector-specific (average) hedge ratios) should help mitigate this so-called “hedging crash

risk.”

Panel B of Table VII reports the results on hedging performance of rating-specific hedge

ratios. A comparison with panel A of the table indicates that the overall HEff in panel B is

much less negative for the BC, LS, and DEJD models and, in fact, becomes statistically in-

significant for the latter two models.12 Although CDG’s overall HEff also increases from

3.5% to 5.8%, it is not significantly different from zero. On the other hand, the Merton

overall HEff increases from 7.0% to 9.9% and remains highly significant.

The hedging performance in individual rating groups also improves. For instance, the

Merton HEff is now significantly positive for five out of seven groups (only two out of seven

in panel A). For the BC model, its HEff for the BBB group, for example, increases from

�90.3 (highly significant) in panel A to �1.82 (no longer significant) in panel B. For the LS

model, its HEff for the BBB group also increases from a highly significant �113.3 in panel A

to an insignificant �2.06 in panel B.

Results on hedging performance of sector-specific average hedge ratios, reported in

panel C of Table VII, provide similar evidence as those in panel B do. Consider the overall

HEff first. Note that again, HEff is much less negative for the BC, LS, and DEJD models

than its counterparts in panel A, although it is still significant for the BC and DEJD mod-

els.13 The CDG HEff is more positive and still significantly different from zero. The Merton

HEff also increases slightly and remains highly significant. Overall, judging from the whole

sample, averaging hedge ratios by ratings is more effective than averaging by industry in

improving the hedging performance.

Next, consider HEff for individual sectors. For example, the LS HEff for “industrial”

increases from �103.6 in panel A to �7.48 (albeit still significant) in panel C. The CDG

HEff is now significantly positive for five sectors, as opposed to two sectors in panel A.

In summary, the results based on both the full sample and rating- or sector-specific sub-

samples in Table VII provide strong evidence that using smoothed hedge ratios helps im-

prove the hedging performance. Furthermore, based on the hedging performance, the top

three ranked models are the Merton, CDG, and DEJD models.

We should note that while the analysis of hedging effectiveness presented here corre-

sponds to an out-of-sample test of hedge ratios, the estimates of model parameters make

use of the full sample. In an untabulated analysis, we examine the hedging performance for

2- and 7-year CDS contracts (which are not included in the GMM estimation) and find that

the results are consistent with those using the 5-year CDS. In particular, the ranking of the

12 Why is the BC overall HEff still large and negative with smoothed hedge ratios? The reason is that

the BC model-implied hedge ratios are striking for certain firms in the sample. In an untabulated

analysis, we find that these firms have an estimated default boundary K/F ranging from 1.26 to

1.54. When the asset value is close to this artificial boundary, the equity value becomes insensi-

tive to the asset value. A low @Et=@At inflates the model-implied equity sensitivity of the CDS

spread.

13 The overall negative HEff for the DEJD model is mainly caused by a BB-rated technology firm.

When this firm is excluded from the sample, the hedging performance of the DEJD model is gener-

ally comparable to that of the CDG model (untabulated).
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five models based on the their hedging performance remains the same. That is, our findings

are robust to the aforementioned look-ahead bias.

6.6 Model-Implied Default Probabilities

The discussion so far has focused on the implications of structural models for variables

under the risk-neutral measure. In this subsection, we examine model-implied P-measure

default probabilities. For comparison, we also include model-implied default probabilities

under the (risk-neutral) Q-measure.

As an important determinant of CDS spreads, risk-neutral default probabilities are

straightforward to calculate using an estimated model. In order to calculate real default

probabilities, we need to specify the dynamics of the underlying variables under the P-meas-

ure and then estimate those P-measure parameters. The GMM-based estimation of such

parameters, however, requires that P-measure moment conditions be specified. We do not

pursue this approach in this analysis. Instead, we calibrate the P-measure parameters in the

analysis that follows when it is necessary.

For illustration we focus on the BC model—the simplest one among the three candidate

models with a flat default boundary/barrier—in the analysis that follows. Given the specifi-

cation of the BC model under Q, its specification under P involves only one extra param-

eter, the asset risk premium pv � lv � r, where lv is the expected asset growth rate. We

calibrate pv using the formula, lv � r ¼ rv � SRv, where SRv denotes the asset Sharpe ratio

(equal to the equity Sharpe ratio under the model). To this end, we set SRv to 0.23, the

equity Sharpe ratio of a median firm according to Chen, Collin-Dufresne, and Goldstein

(2008), and then use firm-specific asset volatilities estimated earlier in Section 6.2 to cali-

brate firm-specific asset risk premiums.

Figure 8 plots the time series and term structure of the BC model-implied default proba-

bilities under either the Q measure (panel A) or the P measure (panel B) over the full sample

period. A comparison of panel A and Figure 1 indicates that the BC model fails to capture

the surface of CDS spreads, given that the model assumes a constant recovery rate. As

expected, the default probabilities under Q are markedly higher than their counterparts

under P. Nonetheless, both panels show a spike in late 2002, consistent with Figure 1.

We can also compare the average model-implied real default probability with the aver-

age (historical) default rate for a given rating group. For the latter, we use the average

issuer-weighted cumulative default rates by rating categories over 1920–2004 calculated by

Moody’s. Figure 9 plots the term structures of average default rates (solid line), the BC

model-implied default probabilities under the Q measure (blue dashed line) as well as the P

measure (red dotted line), for three different rating groups, single A (panel A), BBB (panel

B), and BB (panel C). The AAA–A group is not considered here because, first, we do not

have Moody’s average default rates for the AAA–A group and secondly, the AAA–A group

in our sample is dominated by the single A firms. Panel C includes only the BB names in-

stead of the CCC–BB group for the similar reason.

We make two observations from Figure 9. First, the BC model fits the Moody’s average

default rates well for A-rated names. The implication of this result is that the evidence

based on single A firms in our sample is consistent with the notion of the credit spread puz-

zle: the model matches the average default rates but it underpredicts the CDS spreads.

Second, the model underfits the average default rates for both BBB and BB names, especial-

ly at long horizons. To some extent, this result is not surprising given that on average, the

model noticeably underestimates the CDS spreads for BBB and BB names over the full
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sample. For the model to match the historical averages the period 1920–2004, we need

higher asset volatility, default boundary, or both (than the estimates reported in Table III).

Such parameter values also allow the model to fit the observed CDS spreads for BBB and

BB names better, largely consistent with the credit spread puzzle.

7. Conclusion

Empirical studies of structural credit risk models are usually carried out using calibration,

rolling window estimation, or regression analysis. This paper proposes a GMM-based spe-

cification test of these models. This alternative method allows us to directly estimate
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Figure 9. Term structures of average default rates, and model implied risk-neutral and real default

probabilities. This figure plots the term structure of average default rates (solid line), model-implied

default probabilities under both the risk-neutral measure (blue dashed line), and the physical measure

(red dotted line) based on the BC model, for three different rating groups, single A (panel A), BBB

(panel B), and BB (panel C).
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structural models, as well as test whether all the restrictions of a given model are satisfied,

among other things.

For illustration, we apply the proposed specification test to five representative structural

models using data on the term structure of CDS spreads and realized equity volatility (esti-

mated with high frequency intraday data). We conduct the test using a sample of industrial

firms over a post dot-com bubble and pre-financial crisis period that nonetheless includes

some relatively high credit risk episodes. The test results show that the Merton (1974)

model and the two diffusion-based constant-barrier models are all strongly rejected by the

proposed specification test. However, the results also indicate that incorporating jumps or

stationary leverage into a barrier model improves the overall fit of CDS spreads and equity

volatility. Nonetheless, all five models have difficulty capturing the dynamic behavior of

both equity volatility and CDS spread curves, especially for IG names. On the other hand,

our results demonstrate that these models have a much better ability to explain the average

sensitivity of CDS spreads to equity returns than their ability to explain the average CDS

spread and equity volatility. Surprisingly, we also find that the Merton (1974) model pro-

vides the best hedging performance among all five models.

Overall, the main findings of this study, together with those of Bao and Pan (2013) on

excess corporate bond return volatility, suggest a need for new structural models that can

explain not only the credit spread puzzle but also the second moment variables. Another

line of inquiry worth pursuing is to conduct a more rigorous and comprehensive analysis of

finite-sample properties of the GMM test proposed in this study.

Appendix

Table AI. Summary statistics of individual names

This table reports credit ratings, 5-year CDS spread, equity volatility, leverage ratio, asset pay-

out, and recovery rate, for each of the 93 firms similar to those by ratings and sectors in Table I.

Company Last

rating

Five year

CDS (%)

Equity

volatility (%)

Leverage

ratio (%)

Asset

payout (%)

Recovery

rate (%)

Air Prods & Chems Inc. A 0.238 28.358 33.067 2.086 40.863

Albertsons Inc. BBB 0.692 35.540 54.662 3.650 41.008

Amerada Hess Corp. BB 0.817 28.458 61.871 2.929 40.081

Anadarko Pete Corp. BBB 0.427 31.244 47.816 1.688 39.439

Arrow Electrs Inc. BBB 2.175 44.325 62.279 2.259 39.269

Autozone Inc. BBB 0.708 33.269 30.222 0.827 41.977

Avon Prods Inc. A 0.230 27.128 17.924 0.998 41.353

Baker Hughes Inc. A 0.298 39.469 20.584 1.764 40.833

Baxter Intl Inc. BBB 0.493 39.739 33.159 1.739 40.526

BellSouth Corp. A 0.550 43.254 39.213 3.308 41.848

Black & Decker Corp. BBB 0.389 29.569 45.897 1.566 42.200

Boeing Co. A 0.517 36.815 56.877 1.744 39.336

BorgWarner Inc. BBB 0.572 29.766 48.270 1.285 40.623

Bowater Inc. BB 2.751 30.755 62.578 3.583 41.287

CSX Corp. BBB 0.607 29.651 69.128 2.305 40.486

Campbell Soup Co. A 0.319 27.171 36.114 2.699 40.063

Caterpillar Inc. A 0.350 32.081 57.902 1.992 40.122

(continued)

92 J.-Z. Huang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020



Table AI. Continued

Company Last

rating

Five year

CDS (%)

Equity

volatility (%)

Leverage

ratio (%)

Asset

payout (%)

Recovery

rate (%)

Cendant Corp. BBB 1.595 42.626 59.864 1.291 39.440

Centex Corp. BBB 0.895 41.148 69.613 2.543 40.670

Clear Channel Comms Inc. BBB 1.413 45.192 35.378 1.487 40.789

Coca Cola Entpers Inc. A 0.327 34.774 68.903 2.281 40.019

Computer Assoc Intl Inc. BB 2.889 54.727 35.045 1.044 35.840

Computer Sciences Corp. A 0.565 41.122 43.578 1.182 39.763

ConAgra Foods Inc. BBB 0.470 27.510 43.829 3.516 39.320

Corning Inc. BB 5.412 80.739 41.995 1.138 36.807

Delphi Corp. BBB 1.470 40.828 77.164 1.535 40.539

Delta Air Lines Inc. CCC 18.806 81.939 93.931 2.885 26.566

Devon Engy Corp. BBB 0.732 31.487 56.495 2.281 40.513

Diamond Offshore Drilling Inc. BBB 0.488 39.213 32.696 1.701 40.833

Dow Chem Co. A 0.817 35.536 48.723 3.166 39.775

E I du Pont de Nemours & Co. AA 0.241 30.318 37.916 2.574 41.409

Eastman Kodak Co. BBB 1.317 37.618 56.431 2.550 38.839

Eaton Corp. A 0.335 27.783 42.526 1.527 40.815

Electr Data Sys Corp. BB 2.087 51.554 50.321 2.332 40.349

Eli Lilly & Co. AA 0.219 35.486 13.956 1.898 40.494

Fedt Dept Stores Inc. BBB 0.675 38.303 54.236 1.966 41.664

Ford Mtr Co. BBB 2.977 47.060 92.612 2.769 41.849

GA Pac Corp. BB 3.824 48.523 74.892 3.547 42.054

Gen Elec Co Inc. AAA 0.427 36.356 63.713 2.223 40.883

Gen Mls Inc. BBB 0.539 24.225 44.680 3.095 41.508

Gen Mtrs Corp. BBB 2.434 35.537 94.017 2.595 41.278

Gillette Co. AA 0.147 28.421 17.574 1.672 40.977

Goodrich Corp. BBB 1.230 35.427 61.064 3.187 39.736

Goodyear Tire & Rubr Co. B 7.671 65.509 88.106 2.245 39.840

H J Heinz Co. A 0.310 23.404 39.061 3.199 41.748

Hilton Hotels Corp. BBB 2.141 36.860 51.553 2.754 41.065

Home Depot Inc. AA 0.222 39.170 14.502 0.741 42.223

IKON Office Solutions Inc. BB 3.460 48.604 73.673 1.337 38.221

Intl Business Machs Corp. A 0.381 31.166 32.683 0.578 39.991

Intl Paper Co. BBB 0.740 30.566 58.274 2.944 39.674

J C Penney Co Inc. BB 2.949 45.576 61.984 2.343 37.818

Jones Apparel Gp Inc. BBB 0.634 32.547 26.906 1.353 41.338

Kerr Mcgee Corp. BBB 0.745 26.472 59.613 3.398 41.242

Lockheed Martin Corp. BBB 0.501 32.241 44.982 1.815 41.173

Lowes Cos Inc. A 0.356 36.642 19.222 0.587 41.788

Ltd Brands Inc. BBB 0.584 44.878 21.283 3.854 41.529

Lucent Tech Inc. B 9.525 96.827 63.895 1.255 37.988

MGM MIRAGE BB 2.167 33.197 57.910 2.675 39.764

Masco Corp. BBB 0.612 33.101 35.400 2.758 42.234

Mattel Inc. BBB 0.534 35.721 21.203 2.269 40.322

May Dept Stores Co. BBB 0.608 36.953 52.074 3.923 41.765

Maytag Corp. BBB 0.773 38.307 58.938 2.213 41.476

McDonalds Corp. A 0.322 38.651 30.956 2.107 40.051

(continued)

Structural Credit Risk Models 93

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020



References

Acharya, V. and Carpenter, J. (2002): Corporate bond valuation and hedging with stochastic

interest rates and endogenous bankruptcy, Review of Financial Studies 15, 1355–1383.

Acharya, V., Huang, J.-Z., Subrahmanyam, M., and Sundaram, R. K. (2006): When does strategic

debt-service matter?, Economic Theory 29, 363–378.

Acharya, V., Huang, J.-Z., Subrahmanyam, M., and Sundaram, R. K. (2019): Costly financing,

optimal payout policies and the valuation of corporate debt, in: M. Crouhy, D. Galai, and Z.

Wiener (eds.), World Scientific Reference on Contingent Claims Analysis in Corporate Finance,

Vol. 3, pp. 77–126, World Scientific, Singapore.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001): The distribution of realized

exchange rate volatility, Journal of the American Statistical Association 96, 42–55.

Anderson, R. W. and Sundaresan, S. (1996): Design and valuation of debt contracts, Review of

Financial Studies 9, 37–68.

Table AI. Continued

Company Last

rating

Five year

CDS (%)

Equity

volatility (%)

Leverage

ratio (%)

Asset

payout (%)

Recovery

rate (%)

Nordstrom Inc. BBB 0.609 40.304 43.145 1.555 41.820

Norfolk Sthn Corp. BBB 0.471 36.021 61.054 2.704 39.724

Northrop Grumman Corp. BBB 0.675 26.992 51.679 1.844 40.890

Omnicom Gp Inc. BBB 0.906 36.220 42.475 0.887 40.262

PPG Inds Inc. A 0.360 27.727 37.415 2.667 42.133

Phelps Dodge Corp. BBB 1.780 38.034 48.840 1.877 41.547

Pitney Bowes Inc. A 0.211 27.063 46.124 2.645 41.674

Praxair Inc. A 0.291 28.048 33.167 1.730 42.060

Procter & Gamble Co. AA 0.163 23.275 21.002 1.289 40.450

Rohm & Haas Co. BBB 0.353 29.283 43.281 2.241 42.235

Ryder Sys Inc. BBB 0.590 29.285 65.616 2.294 39.827

SBC Comms Inc. A 0.598 43.723 42.509 3.587 38.423

Safeway Inc. BBB 0.724 39.373 52.084 1.893 41.592

Sara Lee Corp. A 0.281 28.465 42.474 2.900 39.904

Sealed Air Corp. US BBB 2.349 35.792 44.043 1.820 37.390

Sherwin Williams Co. A 0.396 29.004 32.345 1.896 41.694

Solectron Corp. B 4.976 86.414 54.483 1.908 39.241

Southwest Airls Co. A 0.723 43.900 29.447 0.624 40.323

The Gap Inc. BB 2.889 50.769 27.086 1.429 41.034

The Kroger Co. BBB 0.754 39.574 55.452 1.960 41.729

Tribune Co. A 0.413 25.200 34.934 1.500 41.228

Utd Tech Corp. A 0.260 30.856 37.047 1.116 39.475

V F Corp. A 0.323 25.458 31.046 2.687 38.877

Valero Engy Corp. BBB 1.075 36.741 65.574 2.174 40.715

Visteon Corp. BB 2.671 46.160 87.957 1.297 41.348

Wal Mart Stores Inc. AA 0.193 32.359 20.540 0.991 39.991

Walt Disney Co. BBB 0.714 43.767 38.906 1.644 39.191

Weyerhaeuser Co. BBB 0.753 29.759 62.255 3.509 41.164

Whirlpool Corp. BBB 0.477 31.043 58.506 2.305 40.512

Williams Cos Inc. B 6.836 84.181 83.953 3.724 35.851

94 J.-Z. Huang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020



Arora, N., Bohn, J., and Zhu, F. (2005): Reduced form vs. structural models of credit risk: a case

study of three models, Journal of Investment Management 3, 43–67.

Augustin, P., Subrahmanyam, M. G., Tang, D. Y., and Wang, S. Q. (2016): Credit default swaps:

past, present, and future, Annual Review of Financial Economics 8, 175–196.

Bai, J., Goldstein, R., and Yang, F. (2018): Is the Credit Spread Puzzle a Myth? Working paper,

Georgetown University, University of Minnesota, and University of Connecticut.

Bai, J. and Wu, L. (2016): Anchoring credit default swap spreads to firm fundamentals, Journal of

Financial and Quantitative Analysis 51, 1521–1543.

Bao, J. (2009): Structural models of default and the cross section of corporate bond yield spreads.

Working paper, MIT.

Bao, J., Chen, J., Hou, K., and Lu, L. (2015): Prices and volatilities in the corporate bond market.

American Finance Association 2015 Boston Meetings Paper. Available at http://dx.doi.org/10.

2139/ssrn.2651243.

Bao, J. and Hou, K. (2017): De facto seniority, credit risk, and corporate bond prices, The Review

of Financial Studies 30, 4038–4080.

Bao, J. and Pan, J. (2013): Bond illiquidity and excess volatility, Review of Financial Studies 26,

3068–3103.

Bao, J., Pan, J., and Wang, J. (2011): Liquidity of corporate bonds, Journal of Finance 66,

911–946.

Barndorff-Nielsen, O. and Shephard, N. (2002): Estimating quadratic variation using realized

variance, Journal of Applied Econometrics 17, 457–478.

Barndorff-Nielsen, O. and Shephard, N. (2004): Power and bipower variation with stochastic

volatility and jumps, Journal of Financial Econometrics 2, 1–48.

Bertsimas, D., Kogan, L., and Lo, A. W. (2000): When is time continuous?, Journal of Financial

Economics 55, 173–204.

Black, F. and Cox, J. (1976): Valuing corporate securities: some effects of bond indenture provi-

sions, Journal of Finance 31, 351–367.

Black, F. and Scholes, M. (1973): The pricing of options and corporate liabilities, Journal of

Political Economy 81, 637–654.

Bollerslev, T., Chou, R., and Kroner, K. (1992): ARCH modeling in finance: a review of the theory

and empirical evidence, Journal of Econometrics 52, 5–59.

Bollerslev, T., Engle, R., and Nelson, D. (1994): ARCH models, in: R. Engle and D. McFadden

(eds.), Handbook of Econometrics, Vol. 4, pp. 2959–3038, Elsevier Science B.V., Amsterdam.

Bongaerts, D., de Jong, F., and Driessen, J. (2017): An asset pricing approach to liquidity effects in

corporate bond markets, Review of Financial Studies 30, 1229–1269.

Campbell, J. and Taksler, G. (2003): Equity volatility and corporate bond yields, Journal of

Finance 58, 2321–2349.

Chen, L., Collin-Dufresne, P., and Goldstein, R. S. (2008): On the relation between the credit

spread puzzle and the equity premium puzzle, Review of Financial Studies 22, 3367–3409.

Chen, L., Lesmond, D. A., and Wei, J. (2007): Corporate yield spreads and bond liquidity, Journal

of Finance 62, 119–149.

Chen, L. and Zhao, X. (2006): Why do more profitable firms have lower leverage ratios? Working

paper, Michigan State University and Kent State University.

Chen, N. and Kou, S. G. (2009): Credit spreads, optimal capital structure, and implied volatility

with endogenous default and jump risk, Mathematical Finance 19, 343–378.

Chen, R., Fabozzi, F., Pan, G., and Sverdlove, R. (2006): Sources of credit risk: evidence from

credit default swaps, Journal of Fixed Income 16, 7–21.

Cochrane, J. H. (2009): Asset Pricing: Revised edition. Princeton University Press, Princeton, New

Jersey.

Collin-Dufresne, P. and Goldstein, R. (2001): Do credit spreads reflect stationary leverage ratios?,

Journal of Finance 56, 1929–1957.

Structural Credit Risk Models 95

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020

http://dx.doi.org/10.2139/ssrn.2651243
http://dx.doi.org/10.2139/ssrn.2651243


Collin-Dufresne, P., Goldstein, R., and Martin, S. (2001): The determinants of credit spread

changes, Journal of Finance 56, 2177–2207.

Cremers, M., Driessen, J., and Maenhout, P. (2008): Explaining the level of credit spreads:

option-implied jump risk premia in a firm value model, Review of Financial Studies 21,

2209–2242.

Das, S. and Hanouna, P. (2009): Hedging credit: equity liquidity matters, Journal of Financial

Intermediation 18, 112–123.

Dick-Nielsen, J., Feldhütter, P., and Lando, D. (2012): Corporate bond liquidity before and after

the onset of the subprime crisis, Journal of Financial Economics 103, 471–492.

Du, D., Elkamhi, R., and Ericsson, J. (2018): Time-varying asset volatility and the credit spread

puzzle, Journal of Finance, Forthcoming, available at https://doi.org/10.1111/jofi.12765.

Duan, J. (1994): Maximum likelihood estimation using price data of the derivative contract,

Mathematical Finance 4, 155–167.

Duffie, D. and Lando, D. (2001): Term structures of credit spreads with incomplete accounting in-

formation, Econometrica 69, 633–664.

Eom, Y. H., Helwege, J., and Huang, J.-Z. (2004): Structural models of corporate bond pricing:

an empirical analysis, Review of Financial Studies 17, 499–544.

Ericsson, J., Jacobs, K., and Oviedo, R. (2009): The determinants of credit default swap premia,

Journal of Financial and Quantitative Analysis 44, 109–132.

Ericsson, J. and Reneby, J. (2005): Estimating structural bond pricing models, Journal of Business

78, 707–735.

Feldhütter, P. and Schaefer, S. (2018): The myth of the credit spread puzzle, Review of Financial

Studies 31, 2897–2942.

Ferson, W. E. and Foerster, S. R. (1994): Finite sample properties of the generalized method of

moments in tests of conditional asset pricing models, Journal of Financial Economics 36, 29–55.

François, P. and Morellec, E. (2004): Capital structure and asset prices: some effects of bankruptcy

procedures, Journal of Business 77, 387–411.

Frank, M. and Goyal, V. (2003): Testing the pecking order theory of capital structure, Journal of

Financial Economics 67, 217–248.

Friewald, N., Jankowitsch, R., and Subrahmanyam, M. (2012): Illiquidity or credit deterioration:

a study of liquidity in the U.S. corporate bond market during financial crises, Journal of

Financial Economics 105, 18–36.

Geske, R. (1977): The valuation of corporate liabilities as compound options, Journal of Financial

and Quantitative Analysis 12, 541–552.

Hall, A. R. (2005): Generalized Method of Moments. Oxford University Press Inc., New York.

Han, S. and Zhou, H. (2016): Effects of liquidity on the non-default component of corporate yield

spreads: evidence from intraday transactions data, Quarterly Journal of Finance 06, 1650012.

Hansen, L. P. (1982): Large sample properties of generalized method of moments estimators,

Econometrica 50, 1029–1054.

Hansen, L. P., Heaton, J., and Yaron, A. (1996): Finite-sample properties of some alternative

GMM estimators, Journal of Business & Economic Statistics 14, 262–280.

Hansen, L. P. and Singleton, K. J. (1982): Generalized instrumental variables estimation of nonlin-

ear rational expectations models, Econometrica 50: 1269–1286.

He, Z. and Milbradt, K. (2014): Endogenous liquidity and defaultable bonds, Econometrica 82,

1443–1508.

He, Z. and Xiong, W. (2012): Rollover risk and credit risk, Journal of Finance 67, 391–430.

Helwege, J., Huang, J.-Z., and Wang, Y. (2014): Liquidity effects in corporate bond spreads,

Journal of Banking & Finance 45, 105–116.

Huang, J.-Z. (2005): Affine structural models of corporate bond pricing. Working paper, Penn

State University.

96 J.-Z. Huang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020

https://doi.org/10.1111/jofi.12765


Huang, J.-Z. and Huang, M. (2002): How much of the corporate-treasury yield spread is due to

credit risk? NBER Asset Pricing Fall 2002 Conference paper. Available at http://ssrn.com/

abstract¼1295816.

Huang, J.-Z. and Huang, M. (2012): How much of the corporate-treasury yield spread is due to

credit risk?, Review of Asset Pricing Studies 2, 153–202.

Huang, J.-Z., Nozawa, Y., and Shi, Z. (2018): The global credit spread puzzle. Working paper,

Penn State University, HKUST, and Tsinghua University.

Huang, J.-Z., Rossi, M., and Wang, Y. (2015): Sentiment and corporate bond valuations before

and after the onset of the credit crisis, Journal of Fixed Income 25, 34–57.

Huang, J.-Z. and Shi, Z. (2016): Hedging interest rate risk using a structural model of credit risk.

Working paper, Penn State University.

Hull, J., Nelken, I., and White, A. (2005): Merton’s model, credit risk, and volatility skews,

Journal of Credit Risk 1, 3–27.

Jagannathan, R., Skoulakis, G., and Wang, Z. (2002): Generalized methods of moments: applica-

tions in finance, Journal of Business & Economic Statistics 20, 470–481.

Jones, E. P., Mason, S. P., and Rosenfeld, E. (1984): Contingent claims analysis of corporate cap-

ital structures: an empirical investigation, Journal of Finance 39, 611–625.

Kapadia, N. and Pu, X. (2012): Limited arbitrage between equity and credit markets, Journal of

Financial Economics 105, 542–564.

Kelly, B. T., Manzo, G., and Palhares, D. (2016): Credit-implied volatility. Working paper,

Chicago Booth.

Kocherlakota, N. R. (1990): On tests of representative consumer asset pricing models, Journal of

Monetary Economics 26, 285–304.

Kou, S. G. (2002): A jump-diffusion model for option pricing, Management Science 48,

1086–1101.

Leland, H. E. (2004): Predictions of default probabilities in structural models of debt, Journal of

Investment Management 2, 5–20.

Leland, H. E. and Toft, K. B. (1996): Optimal capital structure, endogenous bankruptcy, and the

term structure of credit spreads, Journal of Finance 51, 987–1019.

Lettau, M. and Ludvigson, S. (2001): Resurrecting the (C) CAPM: a cross-sectional test when risk

premia are time-varying, Journal of Political Economy 109, 1238–1287.

Longstaff, F., Mithal, S., and Neis, E. (2005): Corporate yield spreads: default risk or liquidity?

New evidence from the credit-default-swap market, Journal of Finance 60, 2213–2253.

Longstaff, F. and Schwartz, E. (1995): A simple approach to valuing risky fixed and floating rate

debt, Journal of Finance 50, 789–820.

Mahanti, S., Nashikkar, A., Subrahmanyam, M. G., Chacko, G., and Mallik, G. (2008): Latent li-

quidity: a new measure of liquidity, with an application to corporate bonds, Journal of Financial

Economics 88, 272–298.

McQuade, T. J. (2018): Stochastic volatility and asset pricing puzzles. Working paper, Stanford

University.

Meddahi, N. (2002): A theoretical comparison between integrated and realized volatility, Journal

of Applied Econometrics 17, 479–508.

Mella-Barral, P. and Perraudin, W. (1997): Strategic debt service, Journal of Finance 52, 531–556.

Merton, R. (1974): On the pricing of corporate debt: the risk structure of interest rates, Journal of

Finance 29, 449–470.

Merton, R. (1976): Option pricing when underlying stock returns are discontinuous, Journal of

Financial Economics 3, 125–144.

Newey, W. K. and West, K. D. (1987): A simple positive semi-definite, heteroskedasticity and

autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

Perrakis, S. and Zhong, R. (2015): Credit spreads and state-dependent volatility: theory and em-

pirical evidence, Journal of Banking & Finance 55, 215–231.

Structural Credit Risk Models 97

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020

http://ssrn.com/abstract=1295816
http://ssrn.com/abstract=1295816
http://ssrn.com/abstract=1295816


Predescu, M. (2005): The performance of structural models of default for firms with liquid CDS

spreads. Working paper, Rotman School of Management, University of Toronto.

Ramezani, C. A. and Zeng, Y. (2007): Maximum likelihood estimation of the double exponential

jump-diffusion process, Annals of Finance 3, 487–507.

Schaefer, S. and Strebulaev, I. A. (2008): Structural models of credit risk are useful: evidence from

hedge ratios on corporate bonds, Journal of Financial Economics 90, 1–19.

Schestag, R., Schuster, P., and Uhrig-Homburg, M. (2016): Measuring liquidity in bond markets,

Review of Financial Studies 29, 1170–1219.

Shi, Z. (2019): Time-varying ambiguity, credit spreads, and the levered equity premium, Journal

of Financial Economics, forthcoming.

Strebulaev, I. A. and Yang, B. (2013): The mystery of zero-leverage firms, Journal of Financial

Economics 109, 1–23.

Sundaresan, S. (2013): A review of Merton’s model of the firm’s capital structure with its wide

applications, Annual Reviews of Financial Economics 5, 21–41.

Tauchen, G. (1986): Statistical properties of generalized method-of-moments estimators of struc-

tural parameters obtained from financial market data, Journal of Business and Economic

Statistics 4, 397–416.

Vasicek, O. A. (1977): An equilibrium characterization of the term structure, Journal of Financial

Economics 5, 177–188.

Zhang, B. Y., Zhou, H., and Zhu, H. (2009): Explaining credit default swap spreads with equity

volatility and jump risks of individual firms, Review of Financial Studies 22, 5099–5131.

98 J.-Z. Huang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/24/1/45/5477416 by N

ational Science and Technology Library -R
oot user on 29 Septem

ber 2020


	rfz006-FM1
	rfz006-FN1
	rfz006-FN2
	rfz006-FN3
	rfz006-FN4
	rfz006-FN5
	rfz006-FN6
	rfz006-FN7
	rfz006-FN8
	rfz006-FN9
	rfz006-FN10
	rfz006-FN11
	rfz006-FN12
	rfz006-FN13
	app1

