Unemployment Bene ts and Matching E ciency in an Estimated DSGE Model with Labor Market Search Frictions

Ji Zhang^y

PBC School of Finance, Tsinghua University

Abstract

To explain the high and persistent unemployment rate in the U.S. during and after the Great Recession, this e ort develops and estimates a DSGE model with search and matching frictions and shocks to unemployment bene ts and matching e ciency. It nds that the unemployment bene ts play an important role in the cyclical movement of unemployment through their e ects on labor demand, a channel overlooked in previous studies. From the second half of 2008 to 2011, extended unemployment bene ts may have increased the overall unemployment rate by 1 percentage point. In contrast, matching e ciency changes have less e ect on the cyclical movement of unemployment for the same period, but signi cantly slowed down the recovery after 2012.

Keywords: DSGE, search and matching frictions, unemployment bene ts, match-

ing e ciency

JEL codes: E24, E32, E52

¹I would like to thank my advisor, James D. Hamilton, for his invaluable advice. I would also like to thank Davide Debortoli, Shigeru Fujita, Garey Ramey, Irina A. Telyukova and seminar participants at 2014 Midwest Macro, and 2015 SNDE for their comments and suggestions. I am also grateful to Francesco Furlanetto and Nicolas Groshenny for generously sharing their data.

²Ji Zhang: PBC School of Finance, Tsinghua University (E-mail: zhangji@pbcsf.tsinghua.edu.cn).

1 Introduction

The e ects of unemployment bene ts on unemployment are the subject of an active policy debate. Most existing empirical literature investigating the e ects of unemployment bene ts have focused on the micro e ect { namely, the unemployment bene ts reduce workers' search e orts { but ignore two potentially large general equilibrium e ects. The rst of these is that unemployment bene ts may have a stimulative e ect on aggregate demand. The second e ect is unemployment bene ts reduce rm vacancy creation, which is consistent with the Mortensen-Pissarides framework. The latter e ect was studied by Hagedorn, Karahan, Manovskii, and Mitman (2013, 2015) and Mitman and Rabinovich (2014). The model in Mitman and Rabinovich (2014) was designed to study the e ect on vacancy creation, but does not incorporate the impact of unemployment bene ts on aggregate demand. However, these two e ects work in opposite directions, so a DSGE model incorporating both e ects is necessary to assess their magnitudes quantitatively. The empirical methodology in Hagedorn et al. (2013, 2015) is based on di erences between states and border counties and thus it di erences out part of the stimulative e ect of unemployment bene ts that a ects those counties symmetrically. An aggregate model is needed to assess the magnitude of this stimulative e ect. This paper o ers a model to assess the overall e ects of the extended unemployment bene ts policy, and is the main contribution of the paper.

In this paper, a DSGE model is built to include labor market search and matching frictions and unemployment bene ts shocks. Di erent from most existing models with search and matching frictions, this model does not exogenously set real wages to be rigid by assuming staggered Nash bargaining or Calvo-type wage stickiness. Instead, it matches the inertial wage dynamics in the data by estimating the value of leisure and other labor market structural parameters. The advantage is generating inertia wage endogenously. This strategy is used by Christiano, Eichenbaum and Trabandt (2013) as well, however, they used an alternative bargaining set-up, which is much more complicated than but does deliver similar results to the Nash bargaining process used here.

2

Zhang (2014) also investigated the e ect of unemployment bene ts program from the aspect of labor demand. However, there are two main di erences between this current paper and Zhang (2014). First, this paper provides an estimated model, while Zhang (2014) studied a calibrated model and referred to the estimation results in this paper when calibrating the parameters related to unemployment bene ts policies. Second, this paper models the economy for the past 40 years and uses data from 1976 to the present, while Zhang (2014) focused on the Great Recession and introduced the zero lower bound on the nominal interest rate and liquidity shocks to capture the main characteristics of the Great Recession only. I do not introduce the zero lower bound and liquidity shocks here for three reasons. First of all, the nonlinearity problem caused by the zero lower bound is more di cult to deal with during the estimation procedure than in a calibrated model. Second, the labor market issues during the Great Recession are the motivation and one application, but those are not the whole picture in this paper, and the zero lower bound and liquidity shocks, which mainly in uence aggregate demand, do not a ect the labor demand channel focused on in this paper. Introducing too many other aspects can contaminate the main message in this paper. Third, in Zhang (2014), a comparison between the zero lower bound case and the normal case shows that under both circumstances, positive unemployment bene ts shocks slow down the labor market recovery, and the key di erence between these two scenarios is that positive unemployment bene ts shocks have a larger stimulative e ect at the beginning of the recession if the zero lower bound is binding due to a non-increasing real interest rate. However, none of the results in this current paper either indicate or rely on that the initial rise in unemployment during the Great Recession was mainly caused by unemployment bene ts shocks. Thus, di erence between these two scenarios is not crucial in this current study. Considering these three reasons, the model is kept simple, and the zero lower bound issue is not discussed in this paper.

One of the primary ndings of this paper is that shocks to unemployment bene ts have historically played a very important role in unemployment uctuations. In the model of-

3

fered here, shocks to unemployment bene ts account for more than 27% of the variation in unemployment over the long term. During the Great Recession and the early recovery period (from the second half of 2008 to the end of 2011), unemployment bene ts shocks contributed to the high unemployment rate. Particularly, during the period from the end of 2009 to 2011, unemployment bene ts shocks increased the unemployment rate by more than one percentage point. While the unemployment bene ts shocks accounted for a large proportion of the high unemployment during 2009 to 2011, matching e ciency shocks signi cantly slowed down the labor market recovery from 2011 to the end of 2013. However, when unemployment bene ts shocks are not taken into account, over 40% of unemployment variations can be explained by matching e ciency shocks, which is grossly overestimated since the e ects of unemployment bene ts shocks are largely picked up by the matching e ciency shocks.

The remainder of this paper is structured as follows. Section 2 sets up the model. Section 3 presents the estimation of the model parameters. Section 4 presents the results for the baseline model. Section 5 gives the results of robustness checks. Finally, Section 6 concludes the paper.

2 The Model

The primary framework of the model I use follows Smets and Wouters (2007). The model considers three types of agents: households, intermediate goods rms, and nal goods rms. And like Smets and Wouters (2007), I introduce a number of exogenous shocks in the model.

2.1 Household

There is a representative household in the economy and there are a continuum of members, indexed by *i*, measured on [0;1] in the household. Every member has the same period utility function: $\frac{(c_t - hC_{t-1})^1}{1-}$, where the utility depends not only on their own consumption of nal

goods c_t , but also on the past aggregate consumption in the economy, C_{t-1} . I de ne *h* as the habit formation parameter. Unlike Smets and Wouters (2007), I don't include the intensive margin of employment, because Gertler, Sala and Trigari (2008) found that most of the cyclical variation in employment in the United States is on the extensive margin and including the intensive margin does not a ect the model very much. Leisure is not considered in the utility function here. Instead, it appears in the budget constraint. That is, the value of being unemployed is measured in consumption goods and considered a part of the household does not make the labor supply decision. All unemployed members search on the job market and the frictional search and matching process determines who is employed. The representative household maximizes:

$$\mathbb{E}_{0} \underbrace{{}^{\times}_{t=0}}_{t=0} \frac{t (C_{t} \quad hC_{t-1})^{1-}}{1}$$
(1)

s:t:

$$C_{t} + I_{t} + \frac{B_{t}}{{}_{t}^{b} r_{t} P_{t}} = \int_{0}^{L_{1}} {}_{it} W_{it} di + \frac{B_{t-1}}{P_{t}} + r_{t}^{k} d_{t} K_{t-1}^{H} D(d_{t}) K_{t-1}^{H} + D_{t} + \int_{0}^{L_{1}} (1 - i_{t}) (A_{t} + G_{t}^{U}) di T_{t}$$

$$(2)$$

The inter-temporal discount factor is , and the consumption of the family members at period *t* is C_t . The consumption C_t is a CES function over a continuum of goods with elasticity of substitution $\frac{p}{t}$,

$$C_t = \begin{bmatrix} \sum_{0}^{t} (C_{\widetilde{j}t})^{\frac{p}{t-1}} \\ 0 \end{bmatrix} \begin{bmatrix} p \\ \frac{p}{t-1} \end{bmatrix} = \begin{bmatrix} p \\ p \\ t \end{bmatrix} = \begin{bmatrix} p \\ t \end{bmatrix}$$

where \mathcal{F} is the index of the di erentiated nal consumption goods, and ${}^{p}_{t}$ follows log ${}^{p}_{t} = (1 \ _{p}) \log {}^{p} + _{p} \log {}^{p}_{t-1} - {}^{p} {}^{p}_{t-1} + {}^{p}_{t}$. All innovations in this paper, including ${}^{p}_{t}$, are *i:i:d:* random variables with mean 0.

The price for the consumption good is P_t . The investment is represented by I_t . The bond holding is B_t , and the gross nominal interest rate controlled by the central bank is r_t . The risk premium shock is $\frac{b}{t}$, which follows log $\frac{b}{t} = -\frac{b}{b} \log \frac{b}{t-1} + -\frac{b}{t}$.

The household's disposable real labor income earned by member *i* is represented by W_{it} . The indicator for employment status, t_i equals 1 when the person is employed in period t_i and 0 otherwise. The ow value from unemployment includes unemployment bene ts paid by the government G_t^u , as well as other factors (such as leisure) that can be measured in units of consumption goods $A_t = tA_i$, where K_t is the deterministic growth rate of output. I assume A_t has the same deterministic growth rate as output does; in this way, leisure wouldn't become less and less valuable as the economy grows.

The stock of capital at the end of period t 1 held by the household is K_{t-1} . The net return to capital is expressed as the return on the capital used minus the cost associated with variations in the degree of capital utilization: $(r_t^k d_t K_{t-1}^H \quad D(d_t) K_{t-1}^H)$. The income from renting out capital services depends on the level of capital stock and its utilization rate d_t . The cost of capital utilization is assumed to be zero when capital is fully used (*i:e:* D(1) = 0).

The prot from the nal goods sector is $D_{t'}$ the lump-sum tax is T_t .

The accumulation of capital obeys the following rule:

$$K_t^H = (1) K_{t-1}^H + {}_t^I [1 (I_t = I_{t-1})] I_t$$
(3)

where () is the investment adjustment costs, which equals zero when the investment grows at the deterministic growth trend (() = 0). The adjustment cost function also satis es '() = 0 and ''() > 0. $'_t$ is the shock to installation cost, which follows $\log t = t \log t - 1 + t t$.

The representative household maximizes its utility by choosing consumption, bond holdings, investment, capital stock, and the capital utilization rate. The rst order conditions for the household's problem are:

$$C_t: (C_t \ hC_{t-1})^- = e_{1t}$$
(4)

$$B_t: \mathcal{e}_{1t} = \mathbb{E}_t (\mathcal{e}_{1t+1} \ {}^b_t r_t \frac{P_t}{P_{t+1}})$$
(5)

$$I_{t}: Q_{t} \ '(\frac{I_{t}}{I_{t-1}}) \frac{I_{t}'I_{t}}{I_{t-1}} \qquad \mathbb{E}_{t}[Q_{t+1} \frac{e_{1t+1}}{e_{1t}} \ '(\frac{I_{t+1}}{I_{t}}) \frac{I_{t+1}'I_{t+1}}{I_{t}} \frac{I_{t+1}}{I_{t}}] + 1$$

$$= Q_{t} \ I_{t}'(1 \ (\frac{I_{t}}{I_{t-1}}))$$
(6)

$$\mathcal{K}_{t}^{H}: Q_{t} = \mathbb{E}_{t} f \frac{e_{1t+1}}{e_{1t}} [Q_{t+1}(1) + d_{t+1}r_{t+1}^{k} \quad D(d_{t+1})]g$$
(7)

$$d_t: r_t^k = D'(d_t) \tag{8}$$

where

$$Q_t = \frac{e_{2t}}{e_{1t}}.$$
(9)

Tobin's q is represented by $Q_t s_4^{by} - 453.042^{84}349.628^{47} dr {(19)}82(8676^{10}s)^{2}284(1^{1}b)^{5}28(5)]^{\frac{1}{7}}59/F 20^{9}11.79552(7)f^{1}739.552(7)f^{1}7$

period, after surviving both separations. The total number of matches evolves according to:

$$N_{t+1} = (1)(N_t + M_t)$$
: (10)

The number of new matches in period *t* depends on the amount of vacancies posted by the rms, V_t , and the number of unemployed workers, U_t . The matching function $M_t(U_t; V_t)$ takes the form ${}^M_t \mathcal{M} U_t V_t^{1-}$, where \mathcal{M} is the scale parameter representing the aggregate matching e ciency. The matching e ciency shock M_t follows log ${}^M_t = {}^M_t \log {}^M_{t-1} + {}^M_t$. In the literature, many papers have attempted to estimate the matching e ciency. They found that the matching e ciency does change pro-cyclically. A shock to the scale parameter of the matching function allows uctuations in the matching e ciency in the model. An increase in the degree of the mismatch, such as the skill mismatch and geographic mismatch, worsens the e ciency of the labor market, and could be considered a negative matching e ciency shock.

The probability of a worker nding a job (the job-nding rate) is given by

$$_{t}^{W} = \frac{M_{t}(U_{t}; V_{t})}{U_{t}} = {}_{t}^{M} \mathcal{M} {}_{t}^{1-} ;$$
 (11)

and the probability of a vacancy being lled (the vacancy- lling rate) is

$$f_t = \frac{\mathcal{M}_t(U_t; V_t)}{V_t} = {}^M_t \mathcal{M} \ \bar{t} ;$$
 (12)

where $t = V_t = U_t$ is the labor market tightness.

Firm's Decision

The production function of a matched rm *j* follows

$$Y'_{jt} = z_t^{t(1-)} K_{jt}$$
 (13)

The common technology shock z_t follows an AR(1) process: $\log z_t = z \log z_{t-1} + \frac{z}{t}$. And is the deterministic labor-augmenting growth rate. Intermediate goods are sold in a competitive market at the given price P_t^I .

Firms that survived from the separation choose capital optimally by maximizing

$$\frac{Z_t K_{jt}^{t(1-)}}{t} - r_t^k K_{jt};$$

where $_{t} = \frac{P_{t}}{P_{t}^{I}}$ is the price markup. The optimal capital level is:

$$K_{jt}^{*} = {}^{t} \left(\frac{Z_{t}}{t \Gamma_{t}^{k}} \right)^{\frac{1}{1}}$$
(14)

Since all rms are identical ex-ante, the subscript *j* can be eliminated. Unmatched rms seeking workers have to pay a cost, t, to post a vacancy. The vacancy posting cost grows at the same deterministic rate as output. The vacancy could be led with probability t and the led vacancy could be separated with probability 1 before entering the production process in period t + 1. The unmatched rm will only post a vacancy when the discounted expected future value of doing so is bigger than or equal the cost. Free entry ensures that unmatched rms post vacancies until

$${}^{t} = {}^{t}_{t} \mathbb{E}_{t} \left[\frac{e_{1t+1}}{e_{1t}} (1) J_{t+1} \right]$$
(15)

where J_{t+1} is the expected future value of a matched rm; this is identical for all rms.

The value of a matched rm can be expressed as the net prototobtained from this period's production plus the discounted expected future value of the rm:

$$J_{t} = \frac{Y_{t}^{I}}{t} \quad W_{t} \quad r_{t}^{k} \mathcal{K}_{t}^{*} + \mathbb{E}_{t} [\frac{e_{1t+1}}{e_{1t}} (1 \quad)J_{t+1}];$$
(16)

where $Y_t^{\prime} = t$ is the rm's revenue from selling intermediate goods evaluated in terms of nal

goods, and W_t is the worker's real wage in terms of nal goods.

A matched worker's value, H_t , is equal to the real wage he/she can get from the work in this period, plus the discounted future value of the work:

$$H_{t} = W_{t} + \mathbb{E}_{t} f \frac{e_{1t+1}}{e_{1t}} [(1) H_{t+1} + X_{t+1}] g_{t}^{2}$$
(17)

where X_t is the value of an unemployed worker:

$$X_{t} = G_{t}^{u} + \mathbb{E}_{t} f \frac{e_{1t+1}}{e_{1t}} [(1) t^{w} H_{t+1} + (1 (1) t^{w}) X_{t+1}] g:$$
(18)

The value of the unemployed worker comprises the total unemployment compensation in current period and expected income, irrespective of future employment.

The economic surplus of a match is $J_t + H_t = X_t$. The real wage resulting from the Nash bargaining is:

$$W_{t} = t \left[\frac{Y_{t}}{t} - r_{t}^{k}K_{t}^{*} + t\right] + (1 - t)(A + G_{t}^{u})$$

where is the steady state bargaining power of workers, and t is the shock to the bargaining power following an AR(1) process: $\log_{t} t = \log_{t-1} t + t$.

The total or average output net of the vacancy posting costs of the economy is de ned as

$$Y_t^{NI} = N_t Z_t^{t(1-)} K_t \quad t \quad V_t$$
(19)

2.3 Final Goods Sector

The nal goods sector is monopolistically competitive. Each nal good rm, indexed by \mathcal{F} , buys the output of the intermediate goods rms at the price P_t^I . They then convert this output into a di erentiated nal good, $Y_{\tilde{j}t'}$ with no cost and sells the nal goods in the market at price $P_{\tilde{i}t}$. The demand for each variety is:

$$Y_{\tilde{j}t} = \left(\frac{P_{\tilde{j}t}}{P_t}\right)^{-\frac{\rho}{t}} Y_t \tag{20}$$

and the aggregate price is

$$P_{t} = \begin{bmatrix} Z_{1} \\ 0 \end{bmatrix} (P_{\tilde{j}t})^{1-\frac{p}{t}} df^{2} \end{bmatrix}^{\frac{1}{1-\frac{p}{t}}}$$
(21)

Prices are sticky in the nal goods sector. In the following analysis, the index \mathcal{F} is eliminated, because every rm faces an identical problem. Following Calvo(1983), during each period, only a fraction of $(1 \ l)$ rms can choose their prices optimally. For the rms which could not re-optimize their prices at period t, they can adjust their prices according to the past in ation rate: $P_t = P_{t-1}$. Now, let P_t^* be the optimal price set by rms that can reoptimize prices in period t. The optimization problem for a nal goods rm is:

$$\max_{P_t} \sum_{s=0}^{\infty} I^s \mathbb{E}_t f_{t;t+s} [P_t^*]_{t+s-1;t-1} Y_{t;t+s} P_{t+s}^{\prime} Y_{t;t+s}]g$$

where

$$Y_{t;t+s} = \left(\frac{P_t^*}{P_{t+s}}\right)^{-p} C_{t+s} C_{t+s}$$

The result of the optimization problem is:

$$P_{t}^{*} = \frac{\mathbb{E}_{t}}{\mathbb{E}_{t}} \sum_{s=0}^{\infty} \frac{\int^{s}_{s=0} \int^{s}_{t;t+s} C_{t;t+s} p_{t+s}^{p} - \frac{1}{t+s} P_{t+s}^{1+p} p_{t+s}^{p} - \frac{p}{t+s}}{\sum_{s=0}^{p} \int^{s}_{s=0} \int^{s}_{t;t+s} C_{t;t+s} (p_{t+s}^{p} - 1) P_{t+s}^{p} p_{t+s}^{p} - \frac{1}{t+s-1} p_{t+s}^{p}}$$
(22)

where $\mathbb{E}_{t \ t;t+s}$ ${}^{s}\mathbb{E}_{t}[({}^{e}_{1t+s}={}^{e}_{1t})(P_{t}=P_{t+s})]$ is the stochastic discount factor for nominal payo s, and ${}_{t+s;t} = P_{t+s}=P_{t}$. So the aggregate price is given by

$$P_{t} = \left[! \left(P_{t-1} \left(\frac{P_{t-1}}{P_{t-2}} \right) \right)^{1-\frac{p}{t}} + \left(1 - ! \right) \left(P_{t}^{*} \right)^{1-\frac{p}{t}} \right]^{\frac{1}{1-\frac{p}{t}}}$$
(23)

2.4 Government

In order to close the model, we need to specify the monetary policy, scal policy, and unemployment bene ts policy. Here, the monetary policy obeys the following simple Taylor rule:

$$b_t = (1 r)(b_t + y b_t) + r b_{t-1} + b_t^r$$
(24)

where \mathbf{x}_t is the log-deviation from the steady state value and the temporary interest rate shock is given by log $\frac{r}{t} = -r \log \frac{r}{t-1} + -\frac{r}{t}$.

The government budget constraint is of the form:

$$G_t + G_t^{utotal} + \frac{B_{t-1}}{P_t} = T_t + \frac{B_t}{r_t P_t}$$
 (25)

where $G_t^{utotal} = G_t^u U_t$ is the total unemployment bene ts.

The steady state unemployment bene ts obtained by each unemployed person are $G^{u} = TTW$, where TT is the replacement rate { the steady state ratio between unemployment bene ts and the average real wage. The changes in unemployment bene ts depend on an exogenous shock on the unemployment bene ts, g_{t}^{u} , and changes in real wages and past unemployment rate: $g_{t}^{u} = b_{t}^{g^{u}} + b_{t} + b_{t-1}$. The unemployment bene ts shock g_{t}^{u} follows log $g_{t-1}^{u} = g_{u} \log g_{t-1}^{u} + g_{t}^{u}$. Figure 1 plots the growth rate of bene ts per unemployed worker¹ and the growth rate of the real wage, which re ects that besides wages and unemployment,

the model implies that the lifetime expected bene ts obtained by an unemployed worker can increase by $\mathbb{E}_t \overset{\mathsf{P}_{\infty}}{=t} \underset{s=t}{s=t} (1 \overset{w}{s})$. Suppose $\mathbb{E}_t \overset{w}{s} \overset{-w}{}$, then the increase in expected bene ts will be $\frac{1}{1-(1-w)}$. If the 1% increase in G^u is transitory, which means there is a 1% positive unemployment bene ts shock with autocorrelation g^u , then the increase in expected bene ts obtained will be $\frac{1}{1-g^u(1-w)}$, which is around 1.64% according to my parameter calibration and estimation. In the real world, the unemployment bene ts program extends from T weeks to T' weeks, then the expected bene ts increase from $\mathbb{E}_t \overset{\mathsf{P}_{t+T}}{=t} \underset{s=t}{s=t} (1 \overset{w}{s}) G^u$ to $\mathbb{E}_t \overset{\mathsf{P}_{t+T^0}}{=t} \underset{s=t}{s=t} (1 \overset{w}{s}) G^u$, which equals $\mathbb{E}_t \overset{\mathsf{P}_{t+T^0}}{=t+T} (1 \overset{w}{-w}) G^u$ with the assumption that $\mathbb{E}_t \overset{w}{s} \overset{-w}{s}$. If the bene ts program in the real world extends from 39 weeks to 99 weeks, the expected bene ts increase by less than 11%, which is equivalent to a 7% positive unemployment bene ts shock in the model.

Government spending expressed relative to steady state output $g_t^y = \frac{G_t}{Y^t}$ follows the process: $\log g_t^y = (1 \quad g) \log g^y + g \log g_{t-1}^y + \frac{g}{t} + \frac{gz}{t}$.

2.5 Market Equilibrium

To obtain the goods market equilibrium, the production should equal the household's demand for consumption and investment, and the government spending:

$$Y_t = C_t + I_t + G_t + (d_t) K_{t-1}^H$$
(26)

The equilibrium condition for the capital market is obtained by equalizing the capital used in the intermediate good sector and the capital stock times the utilization rate:

$$n_t K_t^* = d_t K_{t-1}^H$$
: (27)

3 Parameter Estimation

3.1 Estimation Equations

The previously de ned model is detrended and estimated with Bayesian method using nine key macroeconomic quarterly US time series as observed variables: the log di erence of real GDP ($dGDP_t$), log di erence of real consumption ($dCONS_t$), log di erence of real investment ($dINV_t$), log di erence of the real wage ($dWAG_t$), log di erence of the GDP de ator (INF_t), the federal funds rate (FFR_t), log deviation of the unemployment rate from its mean (log ($UNEM_t \ \overline{UMEM}$)), log deviation of vacancies from its mean (log ($VAC_t \ \overline{VAC}$)), and log di erence of the total government unemployment insurance ($dINS_t$). Every observable is in percentage points; population growth is extracted, since the variables in the model are all in per capita terms. The time period of the data is from 1976Q1 to 2014Q4.²

The details of the data are described in Table 1 to 2 in the appendix. The rst 6 observed variables are the same as those in Smets and Wouters (2007) and Gertler, Sala and Trigari (2008). The 7th variable I use is the unemployment rate, which corresponds with the unemployment in my model directly. I add 2 new observed variables: vacancies and unemployment insurance. I also add 2 new structural shocks, a matching technology shock and an unemployment bene ts shock, to correspond to the two newly added observables so that the number of observables and the number of shocks are equal.

The comparison of the observed variables and shocks used in Smets and Wouters (2007) and Gertler, Sala and Trigari (2008), as well as in this paper, is summarized in Table 3. Table 4 illustrates the mapping between each observed variable and the shock. Equation (28) are the measurement equations, where *d* means the rst di erence, \overline{X} is the mean of X, $\overline{} = 100$ (1) is the quarterly trend growth rate to the real GDP, $\overline{r} = 100$ (r 1) is

²I chose 1976 as the initial year because I use the dataset constructed by Fujita and Ramey (2009) to calibrate parameters, form the priors of the labor market parameters, and use their data on the job- nding rate to conduct the robustness check; their data was constructed using CPS micro data back to 1976. I attempted to use data back to 1966 in the baseline estimation, which is the same as Smets and Wouters (2007), and the results are not a ected. Therefore, in order to maintain consistency with the data used in the robustness checks, I restrict the dataset to the period starting from 1976.

the quarterly average steady state net nominal interest rate, and $-_c = 100$ (1) is the quarterly steady state in ation rate.

3.2 Prior and Posterior of the Parameters

Several parameters are calibrated in this current e ort and are shown in Table 5. The quarterly depreciation rate is xed at 0.025; the elasticity of the production function is set to be 0.33; the discount factor is assumed to be 0.99. Government spending, as a proportion of output, is xed at 0.18. The elasticity of substitution among the di erentiated nal goods, P, is set at 11. These parameters are conventionally xed in the literature. There are eight new parameters coming from the modi ed labor market when compared Smets and Wouters' model, and one of these is xed here: the separation rate is set to 0.105. The reason for xing these parameters is that we cannot obtain information about them from the data used for estimation. As such, these parameters would be di cult to estimate unless they were used directly in the measurement equations.

The priors of the stochastic processes are set based on the setup in Smets and Wouters (2007): the standard errors for the exogenous innovations are drawn from an Inverse-Gamma

distribution with a mean of 0.10 and standard deviation 0.15. The persistence of the AR(1) processes is Beta distributed with mean 0.5 and standard deviation 0.2. The top panel of Table 6 illustrates the prior and posterior distribution of the shock processes.

The priors for the conventional structural parameters are consistent with the papers in the literature. For the new parameters related to the labor market, I set the mean to be consistent with the data and the calibration results found in the literature. I choose priors that are reasonably loose. The bottom panel of Table 6 shows the prior and posterior distribution of the estimated parameters.

Of all the estimated parameters, there is one steady state value of an endogenous variable, , the steady state labor market tightness. Meanwhile, one exogenous parameter, the matching technology \mathcal{M} , is not estimated, as there is a one-to-one mapping between these two parameters when other parameters are given and it is easier to solve the analytical solution of the model at the steady state when is given. The estimated labor market tightness is 0.75, and the implied matching technology is 0.35. The estimated ratio between vacancy posting cost and real wage is 0.10, implying the vacancy posting cost is 1.6% of output. The estimated value of leisure is 35% of the steady state value of average real wage. The estimated steady state labor market tightness is 0.76.

The estimates for the conventional parameters are very close to the results found in both Smets and Wouters (2007) and Gertler, Sala and Trigari (2008).

The main statistics of labor market variables both in the data and in the estimated models are reported in Table 7. The top panel reports the statistics for the data, and the following four panels report the statistics for the baseline model and three robustness check models respectively. The statistics reported include standard deviations, quarterly autocorrelations, and correlation matrices. The standard deviations of the labor market variables are all relative to the standard deviation of output. Table 7 shows that the models can generate labor market variables with large enough volatilities, reasonable persistence, and realistic correlations.

16

4 Sources of Fluctuations

This section examines the sources of the labor market uctuations by investigating impulse responses, variance decomposition and historical decomposition of variables with respect to the estimated shocks in the model.

4.1 Impulse Responses

Figure 2 to Figure 4 indicates the impulse responses of nine key variables to three of the structural shocks. Six of these variables are labor market variables, including the unemployment rate, vacancies, the vacancy- Iling rate, the job- nding rate, the real wage, and the unemployment bene ts. The remaining three variables are consumption, the in ation rate, and the nominal interest rate. The three structural shocks are the technology shock, the matching e ciency shock, and the unemployment bene ts shock. These impulse responses are calculated using parameter values at the posterior means. The x-axis represents the time in quarters and the y-axis represents the deviation from the steady state in percentage points in response to a one standard deviation positive shock. The grey shaded areas indicate the highest posterior density intervals.

As illustrated in Figure 2, a positive technology shock bene to the economy as a whole. Consumption increases, and the labor market conditions improve. Unemployment decreases and rms post more vacancies. The vacancy- Iling rate decreases and the job nding rate largely increases, both because of the rise in the labor market tightness caused by the increase in the number of vacancies and the decrease in the number of people unemployed.

In Figure 3, a positive matching e ciency shock increases the e ciency of the matching process, hence, e ectively and largely increasing the job- nding rate and vacancy- Iling rate, so that unemployment decreases. As expected, unemployment and vacancies move in the same direction. This co-movement in unemployment and vacancies implies a shift in the Beveridge curve.

Figure 4 shows the impulse responses to a positive unemployment bene ts shock. The co-movement of unemployment and vacancies in response to an unemployment bene ts shock di ers from that in response to a matching e ciency shock. In this gure, unemployment and vacancies change and move in the opposite directions. Increased unemployment and decreased vacancies lower the labor market tightness, in turn, raising the vacancy- Iling rate and lowering the job- nding rate.

4.2 Variance Decomposition

Table 9 and Table 10 illustrate the variance decompositions of ve key variables in the model right after and then 40 quarters after the shocks. These ve variables are consumption, the unemployment rate, vacancies, labor market tightness, and the job- nding rate.

The unemployment bene ts shock is ignored in other papers, but it appears to be empirically important. Over 35% of the unemployment variation is caused by this shock in the short term. In the long run, the shock is even more important and accounts for more than 27% of the uctuations in unemployment. The unemployment bene ts shock accounts for over 40% and 33% of these changes in vacancies in the short run and long run respectively.

The matching e ciency shock does not account for as much of the uctuations in unemployment as the unemployment bene ts shock does, especially in the short term. Around 17% and 22% of unemployment uctuations can be explained by the matching e ciency shock in the short run and the long run respectively. However, the matching e ciency shock only explains less than 7% of the uctuations in vacancies both in the short run and long run.

4.3 Application: Unemployment over 2007-2014

Figure 5 summarizes the historical contribution of the shocks to unemployment uctuations during and after the recent recession, starting from 2007Q1. The solid line is the log deviation of the unemployment rate from its average level. The darkest bars with white dots are the

contribution of unemployment bene ts shocks, the gray area with slashes represents the contribution of matching e ciency shocks, and the white area with black dots notes the contribution of all other shocks. This decomposition is based on the estimation of the baseline model. Figure 7 plots the estimated smoothed shocks used in the historical decomposition, and the y-axis of each subplot indicates how many percentage points each corresponding shock deviates from the zero steady state.

Unemployment bene ts shocks accounted for a large proportion of the increase in unemployment during the Great Recession and the early phase of recovery (from 2008Q3 to 2012Q2). Without these unemployment bene ts shocks, the unemployment rate could have been lowered by at least 1 percentage point during 2009Q1 and 2011Q2. This number is smaller than the estimation results in Hagedorn et al (2013, 2015), which show that the unemployment bene ts shocks increased the unemployment rate by 2.5 percentage points during this period. The main reason that the e ect of unemployment bene ts in my model is smaller than that in Hagedorn et al (2013, 2015) is the stimulative e ect on aggregate demand is larger in my model. Many papers with search and matching frictions feature higher unemployment rates than that observed in the data, and this can be justilled by interpreting the unemployed, or more precisely, the unmatched workers in the model as being both unemployed and out of the labor force in the real world. For example, Andolfatto (1996) had u = 0.52, Trigari (2009) had u = 0.29, and Krause and Lubik (2007) had u = 0.12. The steady state unemployment rate in my model is 27%, which is also much higher than that in the data, so the same amount of increase in unemployment bene ts per unemployed worker will result in a much larger increase in the total income of households in the model, implying that the stimulative e ect on aggregate demand is 3 to 5 times larger in the model and then o sets a larger part of the negative e ects of unemployment bene ts shock on labor demand. Introducing labor force participation decisions and distinguish people who are unemployed and people who are out of the labor force can results in a model with a more appropriate unemployment rate and size of the stimulus e ect, and then generate a result much closer to the empirical results in Hagedorn et al (2013, 2015). However, this will make the model even more complicated. Given that despite the stimulus e ect is overestimated in this model, the direct e ect of unemployment bene ts on labor demand still dominates and results in a one percentage higher unemployment during 2009 and 2011, I believe that using the current relatively easier and standard way to model the labor market is su cient.

While the unemployment bene ts shocks increased the unemployment rate by at least one percentage point during 2009 and 2011, the matching e ciency shocks did not play an important role during the same period. The contribution of matching e ciency shocks on unemployment was much smaller than was the contribution of unemployment bene ts shocks in each quarter from 2008Q3 to 2011Q1. This result is consistent with the result in Valletta and Kuang (2010), namely, that there was a limited increase in structural unemployment during 2008 and 2010. From the second half of 2012, the two types of shocks a ected unemployment in opposite directions. Matching e ciency shocks continued to contribute to the high unemployment rate until the end of 2013. However, the unemployment bene ts shocks has been contributing to decreasing the unemployment rate from 2012Q3. Thus, unemployment bene ts shocks increased the unemployment rate during the Great Recession and prevented unemployment from decreasing in the early phase of the recovery period, while matching e ciency shocks contributed more to the slow recovery in unemployment from 2011 to the second half of 2013.

Figure 6 summarizes the historical contribution of the shocks to vacancy uctuations starting in 2007Q1. From 2008Q2 to 2012Q1, the unemployment bene ts shocks decreased vacancies. Particularly, from the end of 2008Q4 to 2010Q2, 20% of the decrease in vacancies was caused by the unemployment bene ts shocks. Unemployment bene ts shocks turned to help the recovery of vacancy postings from 2012Q2. In the meantime, matching e ciency shocks had a very limited e ect on vacancies.

Figure 8 supports the results drawn from the historical decomposition of unemployment. The gure shows the actual Beveridge curve (the black solid line) and its counterfactual

20

counterparts during 2007Q1 and 2014Q4. The x-axis represents how many percentage points the unemployment rate moved away from its mean; the y-axis shows how many percentage points the vacancies moved away from its mean. To obtain the counterfactual Beveridge curve with only the unemployment bene ts shocks (the line with dots), the estimated shocks on the unemployment bene ts are inputted to the estimated model and all other shocks are set to 0. In this way, the e ect of the unemployment bene ts shocks on the Beveridge curve is isolated. It is clear that the unemployment bene ts shocks rst pushed the labor market down along the Beveridge curve during the Great Recession, and then in the opposite direction during the recovery period. To obtain the counterfactual Beveridge curve with only the matching e ciency shocks (the line with triangles), the estimated shocks on matching e ciency are inputted to the estimated model and other shocks are set at 0. The matching e ciency shocks shifted the Beveridge curve to the right. The two counterfactual Beveridge curves show that the unemployment bene ts shocks caused an increase in unemployment and a decrease in vacancies at the same time while the matching e ciency shocks mainly caused an increase in unemployment, but it had a very limited e ect on vacancies. These ndings are consistent with the results for the historical decomposition analysis.³

4.4 Why are the Unemployment Bene ts Shocks so Important?

In the literature, people study the e ect of unemployment bene ts from the aspect of labor supply and focus on how changes in unemployment bene ts a ect workers' search e orts. However, they ignore the e ects of those bene ts on labor demand, which is the main focus of the current paper. Empirical studies, such as Rothstein (2011), and Farber and Valetta (2013), measure the micro e ect of unemployment bene ts extensions, and nd that the expansion on unemployment bene ts did increase the unemployment rate during and after the Great Recession, but the smaller search e ort is not the main channel. Since there is

³The model generates much atter Beveridge curve than that in the data. This is because in the quarterly model, vacancies respond to shocks right away but new matches start producing only from next quarter, hence, unemployment responds to changes in vacancies with a lag of one quarter.

empirical evidence showing that the labor supply is not the main channel through which unemployment bene ts a ect the labor market, it is certainly worth investigating the e ects of unemployment bene ts on labor demand as well.

In this paper, unemployment bene ts shocks a ect unemployment by a ecting labor demand. That mechanism is described as follows. An increase in the unemployment bene ts raises the value of being unemployed, X_{t_i} and hence, pushes up the workers' reservation wage. A higher value of X_t means lower economic surplus of a match, $J_t + H_t = X_t$. Since rms and works split the economic surplus through a Nash bargaining process, decreased surplus implies rms can gain less pro ts from the bargaining process and rm value, J_t , also goes down. Facing a lowered surplus, there are two potential ways to o set the decrease in pro ts for rms.⁴ One way is to reduce wage payments. However, due to the high value of leisure, A, and steady state unemployment bene ts, which account for 35% and 43% of the steady state real wage (or 21% and 26% of labor productivity) respectively, the total value of non-market activity reaches 47% of labor productivity and causes the wage dynamics to exhibit inertial behavior, so it becomes impossible for rms to o set their decrease in pro ts through large and immediate adjustments in wages.⁵ The second possible response of rms is to reduce vacancy posting. Vacancy posting by a rm is determined by Eq. (15). Given the vacancy posting cost, the left-hand-side of Eq. (15), is constant in the detrended model, the bene t of posting vacancies, the right-hand-side of Eq. (15), changes in the same direction as J_t does. Vacancy posting decisions are made solely by rms, so rms can control the number of vacancies and o set their decrease in pro ts through cutting vacancies. The changes in vacancy posting in response to an unemployment bene ts shock, can be supported by the impulse responses in Figure 4 and the variance decomposition in Table 9 and Table 10. Figure 4 shows that in response to a positive unemployment bene ts shock, vacancies

⁴A third way for rms to respond to an decrease in pro ts is ring more workers through raising the separation rate in the model with endogenous separation. Details will be provided in Section 5.3.

⁵There is no agreed value for the non-market activity in the literature. For example, Shimer (2005) calibrated the value of non-market activity to be 40% of labor productivity, and Gertler, Sala, and Trigtari (2008) got the estimated value to be 73%.

do decrease signi cantly, and the variance decompositions imply that 40% of uctuations in vacancies are caused by unemployment bene ts shocks in the short run; even in the long term this number is still above 33%. The reduced vacancies lower the labor market tightness and the job- nding rate, hence, unemployment becomes higher. Thus, on the labor demand side, rms will reduce their vacancy posting in response to higher unemployment bene ts, and their response increases unemployment and makes the labor market situation worse. The key driving force of this labor demand channel is the wage inertia caused by the high value of leisure and high unemployment bene ts at the steady state. Without wage inertia, rms would decrease wages in response to higher unemployment bene ts; hence, both vacancies and unemployment would be a ected less.

Of course, only considering the partial equilibrium e ects on the labor market is not convincing enough, since the labor market is closely related to other parts of the economy, and the unemployment bene ts policy can a ect the economy through other channels, such as aggregate demand. President Obama's Council of Economic Advisors has suggested that Mitman and Rabinovich (2014) did not model the aggregate demand e ects of bene t extensions, which are claimed to be \the key channel through which EUC can aid economic growth and the recovery". In a simple model, it is true that not every aspect of the economy can be taken into consideration. However, in the medium scale DSGE model investigated in this paper, aggregate demand is su ciently considered. Even so, consumption still decreases in response to a positive unemployment bene ts shock, which is opposite to the Council's statement. Thus, according to the rich macroeconomic model, the stimulative e ects of extended unemployment bene ts cannot overcome their detrimental e ect on job creation.⁶

5 Robustness Checks

This section reports on the results of robustness checks. These results show that although the estimated parameters are inevitably di erent when using di erent observables and models in the estimation, the relative importance of shocks during and after the Great Recession, as implied by the variance decomposition and historical decompositions, is indeed very robust.

5.1 Estimation with Job- nding Rate and Labor Market Tightness as Observables

In this section, the job- nding rate and labor market tightness is used as observables to obtain a realistic matching e ciency series and substitute the vacancies for one observed variable in estimation.

Furlanetto and Groshenny (2012) found that when using the unemployment rate and vacancies as observables, it can be di cult to see much decline in a model generated matching e ciency during the Great Recession; when using the job nding rate and labor market tightness as observables, the implied matching e ciency series matches the data better. In the baseline model here, implied matching e ciency does not decline much. Does that smaller decrease in matching e ciency cause an underestimation of the role played by matching e ciency on unemployment? To determine whether the importance of unemployment bene ts and the irrelevance of matching e ciency obtained in the previous sections depends on observables used, in this part, I follow Furlanetto and Groshenny (2012) and use the job- nding rate data constructed by Fujita and Ramey (2009) and the labor market tightness data to calculate the matching e ciency series. I then use that series to substitute for vacancies during the estimation.⁷ Figure 9 plots the matching e ciency series used here as well as the series implied by the estimated baseline model. The solid line is the matching e ciency

⁷I also use the job- nding rate data in Furlanetto and Groshenny (2012), which di ers from the Fujita-Ramey dataset in terms of dealing with the margin error. Similar results were found using this speci cation. The analysis is based on data from 1976Q1 to 2011Q2 due to data availability.

series implied by the baseline model, and the dashed line represents the series implied by the model estimated using the job- nding rate and labor market tightness data. The dashed line presents a very similar pattern to that derived by Furlanetto and Groshenny (2012) and Barnichon and Figura (2011), and also captures the sharp decline in matching e ciency in recent years.

Although di erent data is used herein, I do nd that estimation results from this estimation are very similar to what were obtained before by comparing the second and third columns in Table 8. Matching e ciency shocks are still less important for unemployment, as shown in the second and third column in Table 11. Matching e ciency shocks explain about 8% of the unemployment uctuations, while unemployment bene ts shocks may explain 24% of them in the long run. From the historical decomposition of unemployment reported in Figure 10, we can obtain the same result as in the baseline model, namely, that the unemployment bene ts shock raised the unemployment rate by more than one percentage point from 2009 to 2011. Since this model captures the large decline in matching e ciency during the Great Recession, the decrease in matching e ciency did increase the unemployment rate more from 2007 to 2011 than it did in the baseline case. However, the impact of unemployment bene ts shocks is not a ected by the larger decline in matching e ciency. Unemployment bene ts shocks still account more than one-percentage-point increase in the unemployment rate during 2009Q2 and 2011Q2. Figure 11 shows the actual Beveridge curve (black line) and its counterfactual counterparts (lines with dots and triangles) during 2007Q1 and 2011Q2. The inputs of this analysis are the shocks estimated using data on the job- nding rate and labor market tightness. The solid line represents the actual Beveridge curve, the line with dots represents the Beveridge curve generated with only estimated unemployment bene ts shocks, and the line with triangles represents the curve generated with only estimated matching e ciency shocks. Like the result found in the baseline model, the unemployment bene ts shocks pushed the labor market down along the Beveridge curve and matching e ciency shocks shifted the curve to the right.

Based on these previous analyses, the main results from the baseline model on the relative importance of the unemployment bene ts shocks and the matching e ciency shocks are still maintained when the job- nding rate and the labor market tightness data are used to estimate the model.

5.2 Model with No Unemployment Bene ts Shocks

Since the unemployment bene ts shock is a new concept in this paper, what would happen if there were no unemployment bene ts shock? Would matching e ciency shocks become more important for a ecting unemployment uctuations? This section reports the analysis and the results of a model without unemployment bene ts shocks. Di erent from the baseline case, unemployment bene ts shocks are shut down and the estimation procedure is conducted without the data on total unemployment insurance.

The estimation results for the structural parameters are reported in the fourth column of Table 8, and the variance decomposition of unemployment is shown in the fourth column of Table 11. The estimated structural parameters are indeed very similar to the baseline case. The variance decomposition result is di erent from the baseline case: Matching e ciency shocks cause more than 40% of unemployment. However, the contribution of matching e ciency shocks on unemployment in terms of historical decomposition does not change much. Figure 12 shows that these matching e ciency shocks did not contribute much to the high unemployment rate during the Great Recession and early phase of the recovery period, but did keep preventing the decrease in unemployment from 2011 to the end of 2013, the same implication as that for the baseline model. So even without unemployment bene ts shocks, matching e ciency shocks still did not account for more increase in unemployment in the past 6 years comparing with that in the baseline case. The reason is that matching e ciency shocks cannot generate the co-existence of high unemployment and low vacancies we observed during the Great Recession.

26

5.3 Model with Endogenous Separation

The baseline model assumes that job separations happen exogenously with a constant probability. However, in the real economy, the separation rate is changing over time in a business cycle, and there are papers nding that endogenous separation can t the data better (e.g., Den Hann, Ramey and Watson (2000)). This section reports the results of a model with endogenous separation.

At the beginning of period t, a match is terminated with an exogenous probability x < 1. The remaining matched workers and rms, indexed by j, jointly observe the realization of social common productivity z_t , and match-speci c productivity a_{jt} , which follows a Lognormal distribution with mean 0 and standard deviation a_i , and then decide whether to continue the match. If a_{jt} is larger than some threshold a_{jt} , the match continues and production occurs. Since all the intermediate good rms are identical ex ante, we can eliminate the subscript j. All the matches with match speci c productivity lower than a_t are endogenously terminated. So the endogenous separation rate is given by

$$\prod_{t=1}^{n} F(\boldsymbol{a}_{t}) =$$

t

The rest of the model is the same as the baseline setup.

The estimation results for the structural parameters are reported in the last column of Table 8, and the variance decomposition of unemployment is shown in the last column of Table 11. The results are very similar to those obtained in the baseline case, in the sense that unemployment bene ts shocks account for a large proportion of unemployment uctuations. Figure 13 shows that unemployment bene ts shocks can explain more than one percentage point increase in the unemployment rate during the recovery from the Great Recession and their negative e ect on labor market lasts even longer than that in the baseline case. This is because in the model with endogenous separation, rms can not only decrease vacancy postings but also re more workers through raising the endogenous separation rate in response to their loss in pro ts. So in the baseline case, in response to a positive unemployment bene ts shock, rms can only reduce the ow out of unemployment through posting less vacancies, while in the model with endogenous separation, rms can also increase the ow into unemployment through separating more matches endogenously.

6 Conclusions

In an estimated medium-scale DSGE model with labor market frictions, the unemployment bene ts shocks are responsible for a large proportion of unemployment uctuations. Over 27% of the unemployment variation is caused by these unemployment bene ts shocks in the long term. During the Great Recession and the early recovery period (the second half of 2008 to the end of 2011), unemployment bene ts shocks contributed to the increase in the unemployment rate. The e ect of unemployment bene ts shocks was particularly large between 2009 and 2011. Indeed, the unemployment rate could have been one percentage point lower without these unemployment bene ts shocks during this period. In the later recovery period (from 2012 to the present), unemployment bene ts shocks have had a positive e ect on lowering the unemployment rate. The deterioration of matching e ciency had a

very limited e ect on unemployment from 2009 to 2011, however it did play a major role in preventing the decrease in unemployment from 2011Q2 to 2013Q3, and this negative e ect lasted until the beginning of 2014.

References

- [1] Andolfatto, David. (1996). \Business Cycles and Labor Market Search." American Economic Review, 861, 112-32.
- [2] Barnichon, Regis. (2010). \Building a Composie Help-Wanted Index." *Economics Letters*, 109(2010), 175-178.
- [3] Barnichon, Regis, and Andrew Figura. (2011). \What Drives Matching E ciency? A Tale of Composition and Dispersion." *Finance and Economics Discussion 2011-10*, Board of Governors of the Federal Reserve System.
- [4] Christiano, Lawrence J., Martin Eichenbaum, and Mathias Trabandt. (2013). \Unemployment and Business Cycles." *International Finance Discussion Paper*.
- [5] Den Hann, Wouter, Garey Ramey, and Joe Watson. (2000). \Job Destruction and Propagation of Shocks." *American Economic Review*, 90(3), 482-498.
- [6] Farber, Henry, and Robert Valletta. (2013). \Do Extended Unemployment Bene ts Lengthen Unemployment Spells? Evidence from Recent Cycles in the U.S. Labor Market." *Federal Reserve Bank of San Francisco working paper series*.
- [7] Fujita, Shigeru, and Garey Ramey. (2009). \The Cyclicality of Separation and Job Finding Rates." *International Economic Review*, May 2009, 415-430.
- [8] Furlanetto, Francesco, and Nicolas Groshenny. (2012). \Mismatch Shocks and Unemployment during the Great Recession." *CAMA working paper series*, 34/2012.

- [9] Gertler, Mark, Luca Sala, Antonella Trigari. (2008). \An Estimated Monetary DSGE Model with Unemployment and Staggered Nominal Wage Bargaining." *Journal of Money, Credit and Banking*, 40(8), 1713-1764.
- [10] Hagedorn, Marcus, and Iourii Manovskii. (2008). \The Cyclical Behavior of Equilibrium Unemployment and Vacancies Revisited." *American Economic Review*, 98(4), 1692-1706.
- [11] Hagedorn, Marcus, Fatih Karahan, Iourii Manovskii, and Kurt Mitman. (2013). \Unemployment Bene ts and Unemployment in the Great Recession: The Role of Macro E ects." NBER Working Paper 19499.
- [12] Hagedorn, Marcus, Iourii Manovskii, and Kurt Mitman. (2015). \The Impact of Unemployment Bene t Extensions on Employment: The 2014 Employment Miracle?" NBER Working Paper 20884.
- [13] Krause, Michael, and Thomas Lubik. (2007). \The (Ir)relevance of Real Wage Rigidity in the New Keynesian Model with Search Frictions." *Journal of Monetary Economics*, 54, 706-727.
- [14] Mitman, Kurt, and Stanislav Rabinovich. (2014). \Do Unemployment Bene t Extensions Explain the Emergence of Jobless Recoveries?" *Working Paper*
- [15] Mortensen, Dale, and Christopher Pissarides. (1994). \Job Creation and Job Destruction in the Theory of Unemployment." *Review of Economic Studies*, 61, 397-415.
- [16] Rothstein,. (2011). \Unemployment Insurance and Job Search in the Great Recession." *NBER working paper*.
- [17] Shimer, Rober. (2005). \The Cyclical Behavior of Equilibrium Unemployment and Vacancies." *American Economic Review*, 95(1), 25-49.

- [18] Smets, Frank, and Rafael Wouters. (2007). \Shocks and Frictions in US Business Cycles:A Bayesian DSGE Approach." *American Economic Review*, Vol 97 No. 3, 586-606.
- [19] The Council of Economic Advisers and the Department of Labor. (2013). \The Economic Bene ts of Extending Unemployment Insurance."
- [20] Trigari, Antonella. (2009). \Equilibrium Unemployment, Job Flows, and In ation Dynamics." *Journal of Money, Credit and Banking*, Vol. 41, Issue 1, 1-33.
- [21] Valletta, Robert G., and Katherine Kuang. (2010). \Is Structural Unemployment on the Rise?" *FRBSF Economic Letter*, 2010-34.
- [22] Zhang, Ji. (2014). \Unemployment Policies during the Great Recession and over the Business Cycle." *working paper.*

A Model Appendix

A.1 Stationary Model

$$u_t = 1 \qquad n_t \tag{32}$$

$$n_{t+1} = (1)(n_t + m(u_t; v_t)) = (1 _{t+1})(n_t + {}^M_t E u_t v_t^{1-})$$
(33)

$${}_{t}^{W} = m(u_{t}; v_{t}) = u_{t} = {}_{t}^{M} \mathcal{M} u_{t} v_{t}^{1-} = u_{t} = {}_{t}^{M} \mathcal{M} {}_{t}^{1-}$$
(34)

$$f_{t} = m(u_{t}, v_{t}) = v_{t} = {}_{t}^{M} \mathcal{M} u_{t} v_{t}^{1-} = v_{t} = {}_{t}^{M} \mathcal{M} {}_{t}^{-}$$
(35)

$${}^{-}\mathbb{E}_{t}f_{\underline{1t}}^{\underline{1t+1}}(1) {}^{f}_{t}[\underline{1}_{t+1} r_{t+1}^{k} k_{t+1}^{*} W_{t+1} + \frac{1}{t+1}]g = =$$
 (36)

$$W_{t} = {}_{t}^{\Theta} \left(\frac{1}{---} r_{t}^{k} k_{t}^{*} + {}_{t} \right) + (1 {}_{t} \left(A + g_{t}^{u} \right)$$
(37)

$$1 = -r_t \mathbb{E}_t [\frac{1t+1}{1t} \frac{P_t}{P_{t+1}}] \text{ where } - = - \text{ and } _{1t} = e_{1t} t$$
(38)

$$Q_t = \mathbb{E}_t f_{\frac{1t+1}{1t}}[Q_{t+1}(1) + d_{t+1}r_{t+1}^k - D(d_{t+1})]g$$
(39)

$$\begin{array}{ll}
\mathcal{Q}_{t} & (\frac{i_{t}}{i_{t-1}}) \frac{i_{t}}{i_{t-1}} & -\mathbb{E}_{t}[\mathcal{Q}_{t+1} - \frac{t+1}{t} & (\frac{i_{t+1}}{i_{t}}) - \frac{i_{t+1}}{i_{t}} & \frac{i_{t+1}}{i_{t}}] + 1 \\
&= \mathcal{Q}_{t}(1 & (\frac{i_{t}}{i_{t-1}}))
\end{array}$$
(40)

$$r_t^k = D'(d_t) \tag{41}$$

$$k_t^H = \frac{1}{k_{t-1}^H} + \frac{i}{t} (1 \quad (\frac{i_t}{i_{t-1}})) i_t$$
(42)

$$k_t^* = \left(\frac{Z_t}{tr_t^k}\right)^{\frac{1}{1}}$$
(43)

$$n_t \ k_t^* = d_t k_{t-1}^H \tag{44}$$

$$_{1t} = (c_t \quad h = c_{t-1})^-$$
 (45)

$$y_t = n_t \frac{t \Gamma_t^k}{k_t^k} k_t^* \qquad V_t \tag{46}$$

$$y_t = c_t + i_t + g_t + D(d_t)k_{t-1}^H =$$
(47)

$$P_t^{1-\frac{P}{t}} = ! (P_{t-1-t-1})^{1-\frac{P}{t}} + (1-t)(P_t^*)^{1-\frac{P}{t}} \text{ where } t = \frac{P_t}{P_{t-1}}$$
(48)

$$\Gamma_t = {}_t^r \Gamma_{t-1}^r ({}_t y_t^y)^{1-r}$$
(49)

$$g_t^y = \frac{g_t}{y} \tag{50}$$

$$g_t^{utotal} = g_t^u u_t = \begin{pmatrix} g^u \\ t \end{pmatrix} W_t^{TT} u_{t-1}^u U_t$$
(51)

A.2 Steady State

$$u = 1 \quad n \tag{52}$$

$$n = m(u, v) = (1) \quad Mu \ v^{1-}$$
 (53)

$$w = \frac{m(u;v)}{u} = \mathcal{M}^{-1-}$$
 (54)

$$f = \frac{m(u;v)}{v} = \mathcal{M}^{-}$$
(55)

$$-f(1)(\frac{1}{r^{k}}k^{*} W + \frac{1}{r}) = =$$
 (56)

$$W = \left(\frac{1}{r^{k}k^{*}} + \right) + (1) \left(A + g^{u}\right)$$
(57)

$$\overline{} = -\frac{1}{r}$$
(58)

$$q = 1$$
 where $'(\frac{1}{K}) = 1$ (59)

$$1 = (1 + r^{k})$$
 (60)

$$r^{k} = D'(1)$$
 where $d = 1$ (61)

$$\frac{i}{k^H} = 1 \qquad \frac{1}{\dots} \tag{62}$$

$$k^* = \left(\frac{1}{r^k}\right)^{\frac{1}{1}}$$
(63)

$$\widehat{\mathcal{R}}^* = \left(\frac{1}{r^k}\right)^{\frac{1}{1}} \tag{64}$$

$$nk^* = k^H \tag{65}$$

$$y = \frac{n r^k k^*}{v} \qquad (66)$$

$$y = c + i + g \tag{67}$$

$$_{1} = c^{-} (1 \quad h^{=})^{-}$$
 (68)

$$=\frac{P}{P-1}$$
(69)

$$g = g^{y} y \tag{70}$$

$$g^{utotal} = g^{u} u = w^{TT} u + u^{u} u$$
(71)

A.3 Log-linear Model

$$\mathbf{b}_t = -\frac{n}{u}\mathbf{b}_t \tag{72}$$

$$\mathbf{b}_{t+1} = (1)\mathbf{b}_t + [\mathbf{b}_t^M + \mathbf{b}_t + (1)\mathbf{b}_t]$$
 (73)

$$b_t^w = b_t^M + (1)b_t + (1)b_t$$
 (74)

$$\mathbf{b}_{t}^{F} = \mathbf{b}_{t}^{M} + \mathbf{b}_{t} \qquad \mathbf{b}_{t} \tag{75}$$

$$b_{t}^{f} = b_{1t+1} \qquad b_{1t} + \frac{\frac{1-r^{k}k^{*}(b_{t+1}^{k} + k_{t+1}^{*})}{\frac{1-r^{k}k^{*}}{W} + \frac{1-r^{k}b_{t+1}^{*}}{W}}$$
(76)

$$W \, \mathrm{log}_t = \left[\frac{1}{r^k} r^k (\mathrm{b}_t^k + \mathrm{k}_t^*) + (\mathrm{log}_t - \mathrm{bg}_t) \right] + (1) g^{\mu} \mathrm{g}_t^{\mu} + (\frac{1}{r^k} r^k + A - g^{\mu}) \mathrm{b}_t$$
(77)

$$b_{1t} = b_t + E_t (b_{1t+1} \quad b_{t+1}) + b_t^b$$
 (78)

$$\mathbf{p}_{t} = (\mathbf{b}_{t} \quad \mathbb{E}_{t} \mathbf{b}_{t+1}) + (1 \quad \mathbb{E}_{t} \mathbf{p}_{t+1} + (1 \quad (1 \quad)) \mathbb{E}_{t} \mathbf{b}_{t+1}^{k} \quad \mathbf{b}_{t}^{b}$$
(79)

$$\mathbf{b}_{t}^{k} = {}_{d} \dot{\boldsymbol{\theta}}_{t} \tag{81}$$

$$\boldsymbol{k}_{t}^{H} = \frac{1}{\boldsymbol{k}_{t-1}^{H}} + \boldsymbol{k}_{t}$$
(82)

$$\mathcal{R}_t^* = \frac{1}{1} (\mathcal{B}_t \quad \mathcal{D}_t \quad \mathcal{D}_t^k)$$
(83)

$$\mathcal{R}_{t-1}^{H} = \mathbf{b}_{t} + \mathcal{R}_{t}^{*} \quad \partial_{t}$$
(84)

$$b_{1t} = \frac{h}{1 - h} b_t + \frac{h}{-h} b_{t-1}$$
 (85)

$$\mathfrak{D}_{t} = \frac{c}{y} \mathfrak{b}_{t} + \frac{i}{y} \mathfrak{D}_{t} + \mathfrak{D}_{t} + \frac{r^{k} k^{H}}{y} \mathfrak{R}_{t-1}^{H}$$
(87)

$$b_{t} = \frac{1}{1+t} \mathbb{E}_{t} b_{t+1} + \frac{1}{1+t} b_{t-1} = \frac{(1-t)(1-t)}{t} b_{t} + \frac{b_{t}}{t}$$
(88)

$$b_t = (1 r)(b_t + y b_t) + r b_{t-1} + b_t^r (89)$$

$$\boldsymbol{g}_t = \boldsymbol{g}_t^{\boldsymbol{y}} \tag{90}$$

$$\mathbf{y}_{t}^{u} = \mathbf{b}_{t}^{g^{u}} + \mathbf{w}_{t} + \mathbf{w}_{t-1} \tag{91}$$

There are 20 equations and 20 unknown variables $(u_t, n_t, v_t, \begin{array}{c} f \\ t \end{array}, \begin{array}{c} w \\ t \end{array}, w_t, r_t, Q_t, d_t, i_t, k_t^H, y_t, t, C_t, g_t, g_t^U, t, r_t^K, k_t^*).$

B Tables and Figures

Data Title	Data Description	Data Sources
Data Hite	Beal Gross Domestic Product	U.S. Department of Commerce:
GDPC96	Billions of Chained 1996 Dollars	Bureau of Economic Analysis
GD1 050	Seasonally Adjusted Annual Bate	Dureau of Leononne Analysis
	Gross Domestic Product	U.S. Department of Commerce:
CDPDFF	Implicit Price Deflator 1006–100	Buroau of Economic Analysis
GDI DEF	Sossonally Adjusted	Bureau of Economic Analysis
	Personal Consumption Europhitum	U.S. Department of Commerces
DCEC	Personal Consumption Expenditure	Purpose of Economia Analysia
PUEU	Secondly Adjusted Appuel Date	Bureau of Economic Analysis
	Civilian Employment	U.C. Dependence of Labor
CE1COV		D.S. Department of Labor:
CEIGOV	Sixteen Years & Over, Thousands	Bureau of Labor Statistics
	Seasonally Adjusted, 1996=100	
	Federal Funds Rate	Board of Governors of the
FEDR	Averages of Daily Figures	Federal Reserve System
	Percent	
	Labor Force Status	U.S. Department of Labor:
LNS1000000	Civilian noninstitutional population	Bureau of Labor Statistics
	Seasonally Adjusted	
LNSindex	LNS1000000(1992:3) = 1	
	Fixed Private Investment	U.S. Department of Commerce:
FPI	Billions of Dollars	Bureau of Economic Analysis
	Seasonally Adjusted Annual Rate	
	Nonfarm Business, All Persons	U.S. Department of Labor:
RWAGE	Hourly Compensation	Bureau of Labor Statistics
	Seasonally Adjusted, 2009=100	
	Unemployment Rate	U.S. Department of Labor:
UNRATE	Civilian Unemployment Rate	Bureau of Labor Statistics
	Seasonally Adjusted	
	Index of Help-Wanted Advertising	Composite Help-Wanted Index
HELPWANT	1987=100	by Barnichon (2010)
	Seasonally Adjusted	· · · · · · · · · · · · · · · · · · ·
	Unemployment Insurance	U.S. Department of Commerce:
UNINS	Billions of Dollars	Bureau of Economic Analysis
	Seasonally Adjusted	

Table 1: Data Description and Sources

Table 2: De nition of Data Variables

Data Variable	Mnemonic	Formula
Output	GDP	$= \log (GDPC96 = LNSindex) * 100$
Consumption	CONS	$= \log (PCED = (GDPDEF * LNSindex)) * 100$
Investment	INV	$= \log (FPI = (GDPDEF * LNSindex)) * 100$
Real wage	WAG	$= \log (RWAGE = GDPDEF) * 100$
Unemployment insurance	INS	$= \log(UNINS = (GDPDEF * LNSindex)) * 100$
Unemployment	UNEM	$= \log (UNRATE) * 100$
Inflation	INF	$= \log (GDPDEF = GDPDEF(-1)) * 100$
Federal funds rate	\mathbf{FFR}	= FEDR=4
Vacancy	VAC	$= \log (HELPWANT=LNSindex) * 100$

SW	$(2007)^{1}$	GS	$\Gamma(2008)^2$	This paper]		
Obs. Var.	Shocks	Obs. Var.	Shocks	Obs. Var.	Shocks	
GDP	Gov. Spending	GDP	Gov. Spending	GDP	Gov. Spending	
CONS	Risk Prem.	CONS	Risk Prem.	CONS	Risk Prem.	
INV	Invest. Tech.	INV	Invest. Tech.	INV	Invest. Tech.	
WAG	Wage Markup	WAG	Bargain Power	WAG	Bargain Power	
INF	Price Markup	INF	Price Markup	INF	Price Markup	
FFR	Monetary	FFR	Monetary	\mathbf{FFR}	Monetary	
Employ	Technology	Employ	Technology	UNEM	Technology	
-	-	-	-	VAC	Matching	
-	-	-	-	INS/REPR	Unemp. Ben.	

Table 3: Observed Variables and Shocks Comparison

¹ SW (2007): Smets and Wouters (2007) ² GST (2008): Gertler, Sala, and Trigari (2008)

Table 4:	Mapping	Between	Observables
	and	Shocks	

Variables		Shocks
dGDP	\Leftarrow	Government Spending
dCONS	\Leftarrow	Risk Premium
dINV	\Leftarrow	Investment Specific Technology
dWAG	\Leftarrow	Bargaining Power
dINS & dAWB	\Leftarrow	Unemployment Benefit
INF	\Leftarrow	Price Markup
FFR	\Leftarrow	Monetary Policy
UEMP	\Leftarrow	Technology
VAC	\Leftarrow	Matching Efficiency

Table 5: Calibrated Parameters

			g^{y}	-P	
0.99	0.025	0.33	0.18	11	0.105

Prior Distribution Posterior Distribution						ion		
		Distribution	Mean	St. Dev.	Mode	Mean	5 percent	95 percent
Standard deviations								
Risk premium	b	InvGamma	0.10	0.15	0.23	0.26	0.20	0.31
Bargaining power		InvGamma	0.10	0.15	1.50	1.52	1.35	1.70
Investment	1	InvGamma	0.10	0.15	0.66	0.66	0.58	0.74
Price markup	p	InvGamma	0.10	0.15	0.49	0.51	0.39	0.62
Technology	z	InvGamma	0.10	0.15	0.71	0.71	0.64	0.78
Matching efficiency	m	InvGamma	0.10	0.15	3.10	3.13	2.83	3.44
Government	g	InvGamma	0.10	0.15	0.48	0.48	0.43	0.53
Unemployment benefits	gu	InvGamma	0.10	0.15	2.16	2.19	1.82	2.58
Monetary	r	InvGamma	0.10	0.15	0.26	0.28	0.24	0.31
Risk premium	b	Beta	0.50	0.20	0.96	0.95	0.92	0.99
Bargaining power		Beta	0.50	0.20	0.98	0.98	0.97	0.99
Investment	1	Beta	0.50	0.20	0.80	0.80	0.74	0.86
Price markup	р	Beta	0.50	0.20	0.96	0.96	0.93	0.98
т псе шаткир	р	Beta	0.50	0.20	0.36	0.34	0.21	0.48
Technology	z	Beta	0.50	0.20	0.99	0.99	0.97	0.99
Matching efficiency	m	Beta	0.50	0.20	0.97	0.97	0.94	0.99
Government	g	Beta	0.50	0.20	0.97	0.96	0.94	0.98
Government	gz	Beta	0.50	0.20	0.55	0.55	0.45	0.64
Unemployment benefits	gu gu	Beta	0.50	0.20	0.99	0.99	0.98	0.99
Monetary	r	Beta	0.50	0.20	0.13	0.21	0.06	0.35
Structural parameters								
Taylor rule inertia	r	Beta	0.75	0.10	0.74	0.71	0.65	0.78
Taylor rule: inflation		Normal	2.20	0.10	2.33	2.37	2.22	2.53
Taylor rule: output	y y	Normal	0.13	0.05	0.05	0.05	0.03	0.08
Consumption habit	Ň	Beta	0.50	0.10	0.22	0.23	0.16	0.30
Steady-state growth rate	-	Normal	0.40	0.10	0.50	0.49	0.45	0.54
Inv. Adj. cost elast.		Normal	0.70	0.05	0.78	0.79	0.70	0.87
Price indexation		Beta	0.50	0.15	0.46	0.47	0.25	0.67
Bargaining power		Beta	0.30	0.05	0.67	0.67	0.64	0.71
Calvo price para.	!	Normal	0.50	0.05	0.47	0.47	0.42	0.51
Capital util. adj. cost elast.	d	Normal	1.30	0.05	1.33	1.33	1.25	1.41
Steady-state inflation		Beta	0.50	0.20	0.98	0.97	0.94	0.99
Labor market tightness		Normal	0.63	0.05	0.76	0.75	0.69	0.82
Replacement rate	rr	Normal	0.25	0.05	0.43	0.43	0.35	0.51
Matching function para.		Normal	0.50	0.05	0.53	0.52	0.48	0.56
Unempl. Policy: unempl.	u	Normal	0.20	0.05	0.28	0.28	0.20	0.35
Vacancy posting cost	=W	Normal	0.10	0.05	0.10	0.10	0.02	0.17
Value of leisure	A=W	Normal	0.30	0.05	0.35	0.35	0.27	0.43

Table 6: Prior and Posterior Distribution of Shocks and Structural Parameters

Table 7:	Labor	Market	Summary	Statistics	of t	he	U.S.	Economy	and
			Model	Economy					

Summary Statistics of the	U.S. La	bor Market		
	и	V		W
Standard deviation	5.61	4.71	9.70	4.92
Quarterly autocorrelation	0.97	0.95	0.96	0.93
		Correlation matrix		
u	1.00	-0.85	-0.96	-0.93
V		1.00	0.96	0.85
			1.00	0.92
W				1.00
Summary Statistics of the	Baseline	e Model		
	и	V		W
Standard deviation	4.50	5.39	9.33	4.88
Quarterly autocorrelation	0.98	0.98	0.99	0.99
		Correlation matrix		
u	1.00	-0.78	-0.93	-0.99
V		1.00	0.95	0.79
			1.00	0.94
W				1.00
Summary Statistics of the	Model I	Estimated with Job-fi	nding Rat	e and Labor Market Tightness
	и	V		W
Standard deviation	6.97	5.82	12.36	7.56
Quarterly autocorrelation	0.98	0.98	0.99	0.99
		Correlation matrix		
u	1.00	-0.87	-0.97	-0.99
V		1.00	0.96	0.89
			1.00	0.98
W				1.00
Summary Statistics of the	Model 1	Estimated with No Ur	nemploym	ent Benefits Shocks
	и	V		W
Standard deviation	4.39	4.42	7.75	4.76
Quarterly autocorrelation	1.00	1.00	1.00	1.00
		Correlation matrix		
u u	1.00	-0.55	-0.88	-0.99
V		1.00	0.88	0.57
			1.00	0.88
W				1.00
Summary Statistics of the	Model v	with Endogenous Sepa	aration	
	и	V		W
Standard deviation	4.64	6.76	10.96	5.02
Quarterly autocorrelation	0.99	0.97	0.99	0.98
		Correlation matrix		
u u	1.00	-0.94	-0.98	-0.97
V		1.00	0.99	0.98
			1.00	0.99
W				1.00

 1 The standard deviations of all variables are relative to output.

² All variables in the top panel are reported as deviations from an HP trend (with smoothing parameter 10⁵) following Shimer (2005). The data for the unemployment rate (u), vacancies (v), and labor market tightness () are seasonally adjusted U.S. quarterly data from 1976-2014. The job-finding rate data, W, is from 1976 to 2007 due to data availability.

			Job-finding	No Unemp.	Model with
		Baseline	Rate as	Benefits	Endogenous
			Observable	Shock	Separation
Taylor rule inertia	r	0.74	0.76	0.69	0.88
Taylor rule: inflation		2.33	2.31	2.48	2.36
Taylor rule: output	У	0.05	0.07	0.01	0.24
Consumption habit	ĥ	0.22	0.23	0.18	0.53
Steady-state growth rate	-	0.50	0.48	0.44	0.42
Inv. Adj. cost elast.		0.78	0.78	0.79	0.64
Price indexation		0.46	0.44	0.45	0.93
Bargining power		0.67	0.59	0.51	0.50
Calvo price para.	!	0.47	0.47	0.49	0.36
Capital util. adj. cost elast.	d	1.33	1.33	1.36	1.53
Steady-state inflation		0.98	0.97	0.99	0.86
Labor market tightness		0.76	0.71	0.70	0.80
Replacement rate	rr	0.43	0.43	0.46	0.25
Matching function para.		0.53	0.42	0.53	0.55
Unempl. Policy: unempl.	и	0.28	0.23	0.30	0.03
Vacancy posting cost	=VV	0.10	0.10	0.11	0.06
Value of leisure	A=W	0.35	0.35	0.34	0.36
Threshold of endo. Sep.	ã	-	-	-	0.72

Table 8: Model Sensitivity { Estimation Results for Structural Parameters in Robustness Checks

Table 9: Variance Decomposition of Key Variables (on impact in %)

<u>``</u>					
Variables	C		V		w
Shocks	L	u	V		
Technology	68.57	4.14	4.78	4.97	4.14
Bargaining power	5.01	41.51	47.85	49.84	41.52
Investment	5.39	0.04	0.04	0.04	0.04
Price markup	0.81	1.25	1.47	1.50	1.25
Monetary	0.00	0.00	0.01	0.00	0.00
Matching efficiency	3.09	17.31	4.86	0.67	17.25
Government	12.23	0.06	0.10	0.06	0.05
Unemployment benefits	4.90	35.67	40.88	42.90	35.74
Risk premium	0.00	0.01	0.01	0.01	0.00

Table 10: Variance Decomposition of Key Variables (40 Quarters in %)

Shocks	С	и	V		w
Technology	49.52	3.23	3.94	4.13	3.24
Bargaining power	5.57	44.84	53.91	57.29	44.86
Investment	11.67	0.04	0.05	0.05	0.04
Price markup	0.79	1.65	2.00	2.09	1.64
Monetary	0.00	0.01	0.01	0.01	0.00
Matching efficiency	4.98	22.56	6.66	0.89	22.39
Government	23.87	0.06	0.11	0.07	0.05
Unemployment benefits	3.59	27.60	33.30	35.46	27.77
Risk premium	0.01	0.01	0.02	0.01	0.01

Table 11: Variance Decomposition of Unemployment in the Baseline Model and Models for Robustness Checking (on impact / 40 quarters, in %)

XXXX Madala		Job-finding	No Unemploy.	Model with
Shocks XXXXXX	Baseline	Rate as	Benefits	Endogenous
		Observable	Shock	Separation
Technology	5.51/3.48	5.72/4.01	17.96/14.94	2.67/3.96
Bargaining power	40.45/45.11	57.09/60.34	28.19/30.85	61.93/53.36
Investment	0.03/0.04	0.09/0.09	0.30/80.27	0.76/0.27
Price markup	1.12/1.54	2.70/2.83	10.19/10.76	3.72/6.22
Monetary	0.00/0.01	0.01/0.01	0.01/0.01	0.00/0.00
Matching efficiency	16.53/22.77	6.69/8.22	43.07/42.93	1.13/1.90
Government	0.06/0.06	0.08/0.06	0.26/0.21	0.03/0.02
Unemployment benefits	36.28/26.97	27.62/24.43	=	29.76/34.27
Risk premium	0.01/0.01	0.01/0.01	0.02/0.03	0.00/0.00

Figure 1: Growth Rates of the Unemployment Bene ts and Real Wage

Figure 2: Impulse Responses to a Positive Technology Shock

This gure reports the impulse responses of 9 key variables to one standard deviation positive technology shock. These impulse responses are calculated with parameter values at the posterior means. The shaded areas provide the highest posterior density intervals. The x-axis represents the time in quarters and the y-axis is the deviation from the steady state in percentage points.

Figure 3: Impulse Responses to a Positive Matching E ciency Shock

This gure reports the impulse responses of 9 key variables to one standard deviation positive matching e ciency shock. These impulse responses are calculated with parameter values at the posterior means. The shaded areas provide the highest posterior density intervals. The x-axis represents the time in quarters and the y-axis is the deviation from the steady state in percentage points.

Figure 4: Impulse Responses to a Positive Unemployment Bene t Shock

This gure reports the impulse responses of 9 key variables to one standard deviation positive unemployment bene ts shock. These impulse responses are calculated with parameter values at the posterior means. The shaded areas provide the highest posterior density intervals. The x-axis represents the time in quarters and the y-axis is the deviation from the steady state in percentage points.

Figure 5: Historical Decomposition for Unemployment: 2007Q1 - 2014Q4

The estimated model and smoothed shocks reported in Figure (7) are used to obtain the historical decomposition. The black line is the log-deviation of the unemployment rate from its mean. The dark area with white dots, grey area with slash lines, and white area with black dots represent the contribution of the unemployment bene ts shocks, matching e ciency shocks, and all other shocks to the deviation, respectively.

Figure 6: Historical Decomposition for Vacancies: 2007Q1 - 2014Q4

The estimated model and smoothed shocks reported in Figure (7) are used to obtain the historical decomposition. The black line is the log-deviation of the vacancies from its mean. The dark area with white dots, grey area with slash lines, and white area with black dots represent the contribution of the unemployment bene ts shocks, matching e ciency shocks, and all other shocks to the deviation, respectively.

Figure 7: Shock Inputs of the Historical Decomposition: 2007Q1 - 2014Q4

The y-axis represents how many percentage points the shocks deviate from their steady state value.

Figure 8: Actual and Counterfactual Beveridge Curves: 2007Q1 - 2014Q4

Figure 9: Matching E ciency Implied by the Estimated Model When the Job- nding Rate and Labor Market Tightness are Used as Observables

Figure 10: Historical Decomposition for Unemployment: 2007Q1 - 2011Q2(Using Data on ^w and v=u)

The estimated model and smoothed shocks are used to obtain the historical decomposition. The black line is the log-deviation of the unemployment rate from its mean. The dark area with white dots, grey area with slash lines, and white area with black dots represent the contribution of the unemployment bene ts shocks, matching e ciency shocks, and all other shocks to the deviation, respectively.

Figure 11: Actual and Counterfactual Beveridge Curves: 2007Q1 - 2014Q4(Using Data on ^{*w*} and *v=u*)

Figure 12: Historical Decomposition for Unemployment: 2007Q1 - 2014Q4 (No Unemployment Bene ts Shocks)

The estimated model and smoothed shocks are used to obtain the historical decomposition. The black line is the log-deviation of the unemployment rate from its mean. The grey area with slash lines and white area with black dots represent the contribution of the matching e ciency shocks and all other shocks to the deviation, respectively.

Figure 13: Historical Decomposition for Unemployment: 2007Q1 - 2014Q4 (Endogenous Separation)

The estimated model and smoothed shocks are used to obtain the historical decomposition. The black line is the log-deviation of the unemployment rate from its mean. The black area with white dots, grey area with slash lines, and white area with black dots represent the contribution of the unemployment bene ts shocks, matching e ciency shocks, and all other shocks to the deviation, respectively.