The impact of export tax rebate reform on industrial exporters' soot emissions: Evidence from China

Qian Tian¹, Angin Hu¹, Yuexing Zhang^{2*} and Yagang Meng³

¹School of Accounting, Hebei Finance University, Baoding City, China, ²PBC School of Finance, Tsinghua University, Beijing, China, ³Offshore Oil Engineering Co., Ltd., Tianjin City, China

In this paper, we systematically explore the environmental effects of the export tax rebate rate reduction policy using the China Industrial Enterprise Database, the China Industrial Enterprise Pollution Database, and the China Customs Import and Export Database from 2005 to 2013. Our difference-in-difference (DID) estimates show that the reduction in the export tax rebate rate significantly reduces the intensity of corporate soot emissions, and this finding holds after a series of robustness tests. For every 1-unit reduction in export tax rebate rate, industrial exporters' soot emission intensity decreases by 2.63%. The mechanism analysis shows that the decrease in soot generation, the decrease in coal use intensity, the increase in total amount and efficiency of soot treatment are important channels. Heterogeneity analysis shows that the reduction of export tax rebate rate has a more significant impact on the intensity of soot emissions of high pollution, high energy consumption and resource-based enterprises. This study may provide a reference for other developing countries that also rely on export tax rebates to adjust their policies to combine economic growth with pollution control.

KEYWORD

export tax rebate, China, soot emissions, industrial exporters, DID method

1 Introduction

ħ C_{b} fi 1995, C ý ŧ. 'n ħ .Н 와 🕏 1998, 'n C_{b} , h , 2020). I 2005, (J 4 , C h Þ A ŧ. ŧ. 5 2018; 🚦 ., 2020). I 2007, $C_{\mathbf{n}}$ Ā ŧ. fi ŧ, 4 37% 553 x 5 C_{0} **5** 5.9%, p p à **5** 11.1% (6.0 ., 2015). Ā Ι 'n , W 'n X C_{b} DID b Ι Е D $C_{\bar{b}}$ Е P C 🕻 D C_{r} Ex ŧ. 'n 2013. Th D 2005 fi ý X X b 'n . F h 1- & ė. ▼ 2.63%. **7** Ā ħ ý, h b . H ý **2**7 ħ fi p p , h D/ fi ·萝卜 ħ ý X 'n C_{b} : 1) 7/1 p p Ā \$ b ¥ ... Ā Ą 'n b . 2) ŧ. 5 5 4 Ā 4 ħ Х 3) 'n

h \$\sqrt{y} h \\
\(\text{a} \text{h} \\ \text{a} \\ \text{h} \\ \text{a} \\ \text{h} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \

2 Literature review

2.1 The impact of export tax rebates on trade

& h 'n p 2 (C_{n}) ., 2006; M h, 2007; A ., 2017; 📱 G , 2018; 🗞 , 2019). ., 2017; L 👢 . (2001) G_{0} 4 1985 G_{n} 1999 fi \mathbf{X} X . (2006) G_{n} fi h Dr Ā fi x h **5**. M h (2007) x X ý \$ ý b b fi (2019)ý fi . 55. fi $G_{\mathbf{n}}$ 2007-2015 X fi ₹ fi X . (2022) fi 🐧 🕏 🦻. 🏂 b \mathbf{X} \mathbf{X} 2000 2007. 🦏 🦻 G_{b} \mathbf{X} fi 5 5 (7FP) 5 1. ý · 5 ý X . Н 20 5 , h (2014). N 🔊 F7A 12 FTA M \$, M x ਓ (2015) x þ C F7A C fl Dv b .3%-.35% Ā C . (2020) ý \mathbf{X} Х ŧ. b

2.2 Environmental impacts of trade

, 2017; 2021). 🍸 (1999)h 20 . (2001) b b Ū Η (2003)fi fi fi . A ΊΨ b (2013)M Е . (2022) ₹ fi 30 2004-2017, D & Ø, ā b fi ý r à 🥳 , 2009). C K Ū (1990-2013)FDI fl & FDI fl Dv fi Ā (2019)5 By h h h Ā b (2019)Ā CO₂ (2020)18 E (AMG) . M (MG) E 18. £ £\$ 1980 2018, ý . (2022) CO2 'n p p · 5

2.3 Environmental impact of export tax rebates

F h 5 , 5 2, 5 2, h x x

x x 5 h 5 . h 5

h h x x 5

5 . F x , .(2015) 5

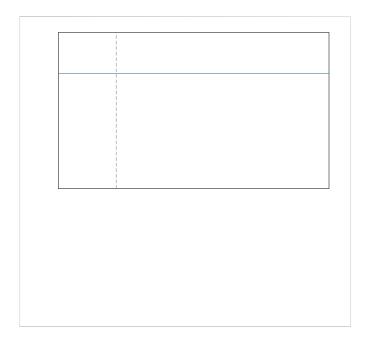
h 5 x x

2003, h p p 2010, 2003 . E (2017)"DA7 O2 2007 CEEPA (Ch Е , F . (2015) CO2 b 'n 'n 5 x. M , 2007; L D L, 2011; 📱 , 2019). (2007)\$13 CO₂ ă (2012) x Ε . Н . (2019) Ā CO₂ fl 🐛 CO₂ OECD M 👢 (2021)Ā CO₂ 1994-2015, 4 CO2 2010 2019, C_{b} . (2022) 5 H 2v 5 þ (2015) 2001–2013, L (2020)CO2 \$ D £ \$ ý, X ħ **5 5** Ø⁄, Х fi ā 4 p 2

Tian et al.

Variables	Measurement	Observations	Mean	S.D.	Min	Max
L 5	L (/h & & & & &)	61,904	-7.498	4.267	-18.65	13.73
L 5 1	L (/h 2/ & & & & 5/4)	61,946	-4.587	4.323	-15.90	14.86
P	I j. 5 (0 2007 1 20	93,420	.826	.379	0	1
₹ x	₹ x x x b 5' & (%)	93,420	2.955	3.912	0	13
₹ x 1	h 5 h 6 h 6 (%)	93,406	2.972	3.741	0	13
₩	h h h 5 t 1 - 2v 0 2v	93,420	.108	.311	0	1
F	L ()	93,415	11.88	1.586	0	19.44
L KL	L (& 9 /h 5 & fix)	92,496	4.500	1.468	-10.20	14.72
L	L (fi	93,410	2.286	.710	0	5.08
ΓĘĎ	7 /7	93,367	.551	.287	891	18.3
P \$ \$	7 _b 5 4 1 b 5 b 2 b 5, b 2 0	93,420	.187	.390	0	1
L b	L ()	62,103	4.6162	3.9584	0	17.048
L	L (&)	36,317	5.8577	3.6716	0	16.417
L	L ()	17,170	2.2109	4.6439	0	21.666
L fi 5	L (h & h &)	40,132	7.6499	4.0107	0	21.602

TABLE 2 Impact of the reduction of export tax rebate rate on industrial exporters' soot emission intensity.


Variables	(1)	(2)	(3)	(4)	(5)	(6)
	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity
\mathbf{x} x $Post_t$	0314***	0317***	0266***	0258***	0259***	0263***
	(.0098)	(.0098)	(.0095)	(.0095)	(.0095)	(.0096)
Ŵ		.1915**	.1963**	.1970**	.1949**	.2077**
		(.0892)	(.0886)	(.0888)	(.0887)	(.0922)
7			6436***	6336***	6361***	6017***
			(.0450)	(.0473)	(.0473)	(.0511)
L KL				0102	0094	0176
				(.0158)	(.0158)	(.0216)
					.0637	.0304
					(.0569)	(.0610)
LEQ						0539
						(.0666)
P 5 5						.2160***
						(.0591)
FE	*	*	*	*	*	*
P 5 FE	*	*	*	*	*	*
FE FE	*	*	*	*	*	*
F FE	*	*	*	*	*	*
2	-5.5233***	-5.5262***	2.2369***	2.1535***	2.0897***	1.4720*
	(.3820)	(.3824)	(.6574)	(.6739)	(.6741)	(.8044)
) §	61,904	61,904	61,900	61,418	61,417	40,056
₹- ţ	.7036	.7037	.7102	.7075	.7075	.7114

h 10%, 5%,

3 Materials and methods

3.1 Data and variables

OĻ Е (2005–2013), _h C_h C 🐛 (2005-2013) (2005-2013). Е D E ſi₩ 2011 ≺M? ., 2022). 7 G C 🔥 2011) (L \$ b Η , h ķ., , h (🗗 👨 ., 2017). 7n I E Е D 'n (<u>\$</u> ŧ. 2018).

7h x 5 h h h 5

- 2h h 5 y h 5

7h x 55 Retaxgapi Post, Retaxgapi

h 2007 - 2007, Post;
h 5 2007 - 2007, Post;
h 6 2007 - 2007, Post;
h 7 2007 - 2007, Post;
h 8 2007 - 2007, Post;
h 8 2007 - 2007, Post;
h 9 2007, Post;
h 9 2007 - 2007, Post;
h 9 2007 - 2007, Post;
h 9 2007, Po

3.2 Methods

7 55 h 5 , 2 k
DID 5 h x x
h 5 Ch .7h k

 $InSI_{ijkt} = \beta_1 * Retaxgap_i \quad Post_t + \beta_2 * X_{it} + \gamma_i + \mu_j + \delta_k + \lambda_t + \varepsilon_{ijkt}$ (1)

TABLE 4 Impact of export tax rebate rate reduction on the firms' soot emission intensity (Replace dependent variables).

Variables	(1)	(2)	(3)	(4)	(5)	(6)	
	Lnsootdensity1	Lnsootdensity1	Lnsootdensity1	Lnsootdensity1	Lnsootdensity1	Lnsootdensity	
\prec x $Post_t$	0215**	0219**	0196**	0184*	0184*	0196*	
	(.0100)	(.0100)	(.0100)	(.0100)	(.0100)	(.0100)	
W		.1447	.1419	.1445	.1440	.1430	
		(.1028)	(.1027)	(.1031)	(.1031)	(.1031)	
L			2905***	2685***	2692***	3516***	
			(.0548)	(.0571)	(.0573)	(.0487)	
L				0212	0211	0182	
				(.0178)	(.0178)	(.0177)	
					.0190	.0278	
					(.0647)	(.0644)	
LED						1139	
						(.0724)	
Р 50 59						.1098	
						(.0686)	
FE	7	*	y.	7	7	*	
P 5 FE	7	*	7	7	7	*	
FE FE	7	*	y.	7	7	*	
F FE	7	*	y.	7	¥	*	
C	-2.0767***	-2.0770***	1.4279*	1.3073	1.2874	2.3274***	
	(.4262)	(.4267)	(.7767)	(.7968)	(.7986)	(.7204)	
O v	61,932	61,932	61,927	61,268	61,267	61,248	
₹2	.6941	.6942	.6954	.6917	.6917	.6924	

h 10%, 5%,

ÿ. 7h fix fix **ӯ** fix fi fix b 'n ŧ. fi (6) ₹1- ¿ X fi ý **ÿ** 2.63%.

4.2 Robustness tests

4.2.1 Parallel trend test

(5)

 D_t p 2 (1). Ip - p5 ý , h ħ fi \mathfrak{D}^{μ} \$ & W h 2 h 2006. 7h fi fi 0 h \$ β_t ý G_{l} β_{t} 2007. F 🔪 1 ý 'n fi 95%

TABLE 5 Mediation mechanism of the effect of export tax rebate rate reduction on the firms' soot emission intensity.

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Lnsootdischarge	Lncoal	Lnsoottreat	Lngovegasability	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity
$Retaxgap_{ij}$ $Post_t$	0221***	0036***	.0326**	.0133***	0051***	0103	0103	0261***
	(.0060)	(.0014)	(.0162)	(.0045)	(.0015)	(.0075)	(.0149)	(.0094)
2/	.1971***	.0366	.1715	0158	0079	.0547	.4375**	.1714*
	(.0650)	(.0616)	(.2145)	(.1101)	(.0165)	(.0720)	(.2015)	(.0953)
L	0751***	.1244***	.4642***	.0201	5141***	5242***	3034***	6904***
	(.0279)	(.0330)	(.1194)	(.0569)	(.0071)	(.0444)	(.1079)	(.0561)
L	0401***	0276*	1234*	0029	.0257***	.0269	.0191	.0046
	(.0121)	(.0162)	(.0708)	(.0278)	(.0031)	(.0257)	(.0632)	(.0268)
L	.1813***	.0915**	.0778	.1116*	1044***	0337	.3231***	.0958
	(.0368)	(.0373)	(.1216)	(.0649)	(.0094)	(.0459)	(.1101)	(.0597)
ΓΕΌ	1355***	0659	1384	1398	.0932***	.1551*	.2495	0884
	(.0524)	(.0693)	(.2403)	(.1059)	(.0133)	(.0910)	(.2145)	(.0815)
P 5 5	.0986***	1474***	.0256	0128	.0538***	1546***	5495***	0070
	(.0381)	(.0395)	(.1419)	(.0666)	(.0097)	(.0515)	(.1297)	(.0624)
ь р					.9963***			
					(.0015)			
L						.0673***		
						(.0144)		
L							.6752***	
							(.0270)	
L 5 5								.2076***
								(.0133)
≠ FE	4	*	*	*	¥	*	¥	*
P 5 FE	4	*	*	*	y*	*	y	*
I & 5 FE	4	*	*	*	¥	*	¥	*
F FE	*	7	*	¥	*	¥	*	*

TABLE 6 Effect of lower export tax rebate rate on the intensity of soot emissions from SOEs and non-SOEs.

Variables		SOEs		Non-SOEs			
	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity	Lnsootdensity	
$Retaxgap_{ij}$ $Post_t$	0463*	0473*	0474*	0350***	0274**	0281***	
	(.0272)	(.0273)	(.0270)	(.0110)	(.0107)	(.0107)	
L		2761**	2823**		7040***	6296***	
		(.1352)	(.1362)		(.0521)	(.0497)	
L		.0509	.0458		0269	0306*	
		(.0592)	(.0625)		(.0182)	(.0181)	
L			.1659			0120	
			(.1187)			(.0725)	
TĘĎ			0401			0086	
			(.0945)			(.0840)	
Р 57 57			0055			.1516**	
			(.1641)			(.0732)	
≠ FE	*	*	¥	y.	y.	*	
P 5 FE	*	*	y ^t	y.	y.	*	
I • ∮FE	*	*	¥	y.	y.	*	
F FE	*	*	*	7	7	*	
С	-6.3105***	-2.7223	-3.0519	-3.4752***	4.4387***	3.6844***	
	(.7712)	(1.9047)	(1.9686)	(.3409)	(.7085)	(.6866)	
О ў	7301	7242	7237	54,589	54,162	54,147	
₹ 2	.7550	.7526	.7529	.7273	.7333	.7327	

10%, 5%,

4.3 Mechanism analysis

x x 5. Thh b 5 h 2 h h 4

References

```
A<sub>h</sub> 55, J. (2009). F, W<sub>h</sub>, h 5 : E5 I
2 h W . J. Econ. Dev. 34, 43–58. :10.35866/ . . . 2009.34.1.003
  h . World Dev.
A, L, H, C, 7, 4. (2017). ★ x x x x x fi : E$ Q, .Rev. Int. Econ. 25, 774–798. :10.1111/ .12284

A 2 y, M, C , T, ₹, ₹, 7, ₹, ↑, M. . (2001). I

$\forall Am. Econ. Rev. 4, 877–908. :10.1257/ .914.877

A M. (2013). D

$\forall P \forall P \forall
  , in. (2013). D , 5 , 5 , 7 P & 5 P & 10.12983/

1. 10.12983/ -2013- 092-100
          $: 7<sub>h</sub>
1016/ . $ .2014.05.005
         ₹ ,⊀. M., K 5, D. A. (1986). 7<sub>b</sub> -
                                                                                                                                                                                                                                                                                                                           . J. Pers.
  § h h: C , , Soc. Psychol. 51, 1173–1182. :10.1037//0022-3514.51.6.1173

      $\vec{y}$
      $\vec{y}$

 To be a second of the second o
  539-331. 10.1016/. 5 2010.0025

Qh. : F - 5 5 . Energy Econ. 80, 366-376. :10.1016/. .2019.01.003

C , ., L , Y , A M., Y , L. (2016). D 5 .2019.01.003

J. Dev. Econ. 123, 73-85. :10.1016/. 5 .2016.08.003
        C<sub>1</sub> , C., C<sub>2</sub> , L., Y. E. . H. (2001). Ex Y x . . I. Comp. Econ. 29, 314–326. :10.1006/
   C_{\hat{\mathbf{h}}} , D. (2020). F C_{\hat{\mathbf{h}}} C_{\hat{\mathbf{h}}}
                                                                                                                                              5 5
. Econ. Res. J. 55, 98–114. (
     Q<sub>1</sub> ).
Q<sub>2</sub> 'E, $, , , , , , , , $. (2011). A $\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fracc
          K . J. Dev. Econ. 108, 222–236. :10.1016/. 5 .2014.01.003
```

```
C<sub>0</sub> . Sustainability 11, 4384. :10.3390/
 11164384
, Energy Policy 163, 112797. :10.1016/. .2022.112797
 H D D , ₹., ₹ 5,₹. (2022). 5
H & C., 7 , 4 . (2016). Ex 5 x

Econ. Rev. 41, 75–89. :10.1016/. h .2016.08.008
L , J., L \stackrel{\checkmark}{\underset{}} . (2015). A \stackrel{\checkmark}{\underset{}} \stackrel{\checkmark}{\underset{}} \stackrel{?}{\underset{}} \stackrel{?}{\underset{}} \stackrel{?}{\underset{}} \stackrel{?}{\underset{}} \stackrel{?}{\underset{}} \stackrel{?}{\underset{}} . China Popul. Resour. Environ. 25, 84–91. :10.
3969/ . .1002-2104.2015.08.011
L, y, C, H., L, 7, L, y, G, &y. (2022).

Ch. Resour. Policy 79, 103092. :10.1016/. 2022.
L , , , L , . (2011). 7 x 2 . Energy Policy 39, 5137–5146. :10.1016/ . .2011.05.050
M , J., 9 5, A. (2015). 7, h C - 4

. Can. J. Econ. 48, 1067–1098. :10.1111/ .12168
 M h & ., y & h , H., , ., D & , L. (2021). C<sub>h</sub> '
5 5 6 10.1016/. 2.2021. 102287
 2013.863170
 P , G. P., H & 1, E. G. (2008). C 2

        $\vec{y}$. Environ. Sci. Technol. 42, 1401–1407.
        :10.1021/

P , G. P., , C. L., G., D., H., , K. (2007). G. , 2v
2 - 2v fi § . Environ.
Sci. Technol. 41, 5939–5944. :10.1021/ 070108
 P & G. C., 7 ă, C. L. (2012). A
 x . Procedia Econ. Finance 3, 728–733. :10.1016/ 2212-5671(12)00221-3
 , 7. (2007). F a. x : A 35, 3194–3202. :10.1016/ . . .2006.10.025
                                                  🦻. Energy Policy
 $\frac{1}{2},\frac{1}{2}\,\text{, M}\, \text{, L} \frac{1}{2}\text{G},\frac{1}{2}\,\text{, .} \,\text{, \frac{1}{2}}\text{B} \text{, \frac{1}{2}}\text{, (2020). M} \text{B} \text{B} \text{ \text{Fcol. Modell.} 431, 109200.} $\frac{1}{2}\text{C} \text{.} \text{ \text{Lool} Modell.} 431, 109200.
 x :10.1016/ . .2020.109200

      5 D. J. Econ. Stud. 3, 201–209.
      :10.1108/01443589910284381
```