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Abstract

We study agents’ decisions to be producers or middlemen in Rubinstein

and Wolinsky’s search model of intermediation, extended to allow general

bargaining, cost and utility. This requires a different approach, but the

analysis remains tractable, delivering clean and sometimes surprising re-

sults. We characterize equilibrium, show intermediation can be essential,

and prove equilibrium is efficient iff bargaining satisfies versions of Hosios’

conditions generalized to three-sided markets. We also go beyond the usual

linear (transferable) utility specification to capture payment frictions, and



1 Introduction

The various roles of middlemen, or intermediaries, have been studied by a number

of authors (see fn. 3 below). However, given the importance of middlemen in real-

world economic activity, from wholesale trade in producer or consumer goods, to

financial intermediation, there would seem to be room for additional work. This

project revisits the classic search-based framework introduced by Rubinstein and

Wolinsky (1987), hereafter RW, extends it on a number of dimensions, and uses



of types, say n = {}, consistent with α, random matching, and the identities

implied by bilateral meetings,  = . Hence, those papers conveniently

take α as fixed when characterizing equilibrium — but that won’t work when

agents get to choose their types, since anything that affects n can affect α.

Therefore we determine endogenously  = , where  is a baseline arrival

rate for type . However, then the relevant identities imply  =  is the same

for all , and in particular  =  = , so we must abandon the original RW

idea that middlemen have a role iff   . Fortunately other factors here

can take over for α, including costs and bargaining powers.

Despite these complications, the framework is tractable, delivering clean and

sometimes surprising predictions — e.g., increasing the cost of intermediation can

lead to more intermediaries. We establish existence and uniqueness of equilib-

rium, and show how intermediation can be essential — e.g., the market may shut

down if middlemen are prohibited. In general, equilibrium can have too few or too

many middlemen, and is efficient iff bargaining powers are just right.2 We also

go beyond the usual linear (transferable) utility specification by allowing strict

concavity, which is relevant because, as discussed below, nonlinearity in payments

interacts with intermediation. And we go beyond the usual steady state analysis

by establishing saddle path stability of dynamic equilibrium. Finally, by rein-

terpreting some parameters, we introduce new applications, including financial

intermediation, which has some novel implications.

Based on these results, we suggest the model is an advance over previous

specifications for economists interested in intermediation, or in search theory

more generally. The rest of the paper involves making the assumptions precise

and verifying the results. Section 2 describes a benchmark environment. Sections

2This is related to standard results going back to Mortensen (1982) and Hosios (1990),

but is also slightly different, because RW-style environments concern three-sided markets, with

producers, consumers and middlemen.
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3 and 4 study equilibrium and efficiency in the linear economy. Sections 5 and 6

consider nonlinear utility and dynamics. Section 7 introduces new applications.

Section 8 concludes. The Appendix contains technical results.3

2 Environment

There is a continuum of infinitely-lived agents. Some are called consumers, and

labeled , with measure . The rest choose to be producers, middlemen or

nonparticipants, labeled  ,  or  , with measure ,  or , where  +

 +  +  = 1. Let n = (   ). Type  agents produce whenever

they can and type  agents trade whenever they can (this is how we define 

and  ; those who do not want to act this way are type ). Type  agents

trade and consume whenever they can. Agents meet bilaterally in continuous

time according to a uniform random-matching process, with  the Poisson rate

at which anyone meets type . Without loss of generality, normalize  = 1.

There are two goods,  and . Good  is indivisible, and is valued for con-

sumption only by type . They get utility  from consuming a unit of . This

good is storable, but only 1 unit at a time, at cost  for type  and cost 

for type  . It is produced by type  at cost , but for most purposes we can

normalize  = 0 without loss of generality — as in Pissarides (2000), what matters

is the total expected discounted cost, including entry, production and search, so

we do not need them all. While  cannot produce  he can acquire it from 

3For motivation, it is hard to improve on RW: “Despite the important role played by inter-

mediation in most markets, it is largely ignored by the standard theoretical literature. This

is because a study of intermediation requires a basic model that describes explicitly the trade

frictions that give rise to the function of intermediation. But this is missing from the standard

market models, where the actual process of trading is left unmodeled.” The situation has im-

proved since then, and in particular work on intermediation with occupation choice includes

Bigalser (1993), Wright (1995), Li (1998), Camera (2001), Johri and Leach (2002), Shevchenko

(2004), Smith (2004), Du



to retrade it to . Good  is divisible but nonstorable. All agents can produce 

at constant marginal cost in terms of utility, normalized to 1, and can consume

it for utility  (), where for now  () = , but later we consider  00 ()  0.

As in the original RW model,  () =  means that transferable utility is used

to pay for , so there are no frictions in the payment process.

Type  agents always have 1 unit of  and type  agents always have 0,

since the former produce and the latter consume right after trade, while type 

agents can have 0 or 1 unit of  in inventory. Given that  accepts  from  ,

let  denote the fraction of  with . Then  increases at rate (1 ) (the

measure of  meeting  without ) and decreases at rate  (the measure

of  meeting  with ). The steady state is therefore given by

 =


 + 

 (1)

We focus for now on steady states, and consider dynamics in Section 6.

Bargaining determines the terms of trade. Agents  and  split the total

surplus with  denoting the share, or bargaining power, of  and  = 1 .

As in previous analyses of RW, with transferable utility, this follows from various

solution concepts, including Nash, Kalai and various strategic bargaining games

(see Wright and Wong 2014 for more discussion). The surplus of type  meeting

type  is   = , because  = , given that for both  and  the

continuation values and outside options cancel.4 Similar expressions hold for the

other surpluses, and allow us to eliminate y = (  ) from the payoffs.

Let  be  ’s payoff or value function. Let 0 or 1 be  ’s value function

when he has 0 or 1 unit of . Let  and  = 0 be ’s and  ’s value functions,

andV = ( 0 1  ). Eliminating the ’s from the  ’s, we get the dynamic

4This is because our agents all stay in the market forever. In the original RW setup,  and

 exit after trading, to be replaced by clones, while  stays forever. Nosal et al. (2015) nest

these formulations by having agents stay after trading with a type-specific probability; having

them stay with probability 1 reduces the algebra without affecting the results too much.

4



programming equations

 = + (1 )(1 0)  (2)

0 = (1 0) (3)

1 = (+ 0 1)  (4)

 = + (+ 0 1) (5)

In (2), e.g., the flow value  is the rate at which  meets  times his share of

the surplus, plus the rate at which he meets  without  times his share of that

surplus, minus the flow storage cost . The other equations are similar.

Agents choosing to be type  start without , for payoff 0. Hence, occupa-

tional choice comes down to the following considerations:

  0  max {0 0} and   0 0 max { 0} (6)

Obviously,    0 requires  = 0 0. In any case, we have:

Definition 1 A (steady state) equilibrium is a nonnegative list hVni such
that  satisfies (1), V satisfies (2)-(5) and n satisfies (6).

From this we can compute the terms of trade y, the spread  =  , the

stock of middlemen inventories , and other interesting variables.

3 Equilibrium

There are three kinds of outcomes. A class 0 equilibrium is one where  =

 = 0 and  = 1 , which means the market shuts down. A class 1

equilibrium is one where  = 1  and  =  = 0, with production but no

intermediation. A class 2 equilibrium is one where   0,   0 and  = 0,

with intermediation. The labels are chosen because class 0 implies no active
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 ̄, and  0 iff

 () ̄

 +  + (1 ) 

(1 ) 

(̄ ) (7)

where ̄ . Since (2)-(5) are linear, there cannot be multiple class 1

equilibria. This proves:

Lemma 2 A class 1 equilibrium exists iff  ̄ and  (), where  is

defined in (7). When it exists it is unique.

Now consider class 2 equilibrium, with    0 and  +  = 1 ,

where  = 0 0. It is convenient to characterize the outcome in terms of ,

then use steady state conditions to recover n. Clearly we need  (0 ̄), where

̄ = 1 . Then routine algebra reduces  = 0 to () = 0, where () is

obtained by replacing  and  with their values in terms of . The result is

() = 1
2 + 2+ 3 (8)

a quadratic with coefficients6

1 = (̄ )

2 = [2(1 ) + ](̄ ) ( +  )(̄ )

3 = (1 )(̄ ) + ( + )(̄ )

We seek  (0 ̄) such that () = 0 and 0 0. Since 0 0 iff  ̄,

we restrict attention to 1  0, so  () is convex. Thus, as shown by the

6Much of the analysis in the Appendix deals with quadratic equations, and in one case, in

the proof of Lemma 14, a cubic. This is unavoidable, and natural, given random matching

and the inventory condition (1). In particular, the rate at which  can trade with  is

 (1 ) =  (1 ), which renders several equilibrium conditions quadratic. Of

course it would be easier if n were fixed, as in previous work, but one of our main objectives
is to make it endogenous. Also note that payoffs depend on n even though our matching
technology has constant returns to scale: one meets potential counterparties at a constant rate

but the outcome depends on whom one meets, and, for  or , depends on .
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curves ,  and  in the right panel of Fig. 1, there are three ways () can

have a solution in (0 ̄): (a) one root with (0)  0  (̄); (b) one root with

(0)  0  (̄); or (c) two roots. The Appendix rules out cases (a) and (c):

Lemma 3 A class 2 equilibrium exists iff (0)  0  (̄).

To see when the conditions in Lemma 3 hold, note that (̄)  0 iff  

() where  is defined above, while (0)  0 iff   () where

() ̄ +
 + 

p



that can be supported as equilibria expands when money is introduced. Sur-

veys by Nosal and Rocheteau (2011) and Lagos et al. (2015) discuss work on the

essentiality of money, banking and related institutions. For both money and in-

termediation, the notion is nontrivial because, e.g., they are clearly not essential

in the standard environment used in general equilibrium theory. In our envi-

ronment, in the region where class 2 equilibrium exists with   ̄, economic

activity depends on middlemen being active: if we were to exogenously eliminate

type  , say by taxing them, the market would shut down. Thus, intermediation

may be necessary for production and consumption to be viable. Even if they are

viable without intermediation, welfare may be enhanced by having some type 

agents, but it may also be diminished, as discussed in Section 4.

Additional insights come from changing parameters in a class 2 equilibrium,

where  solves () = 0. First, notice anything that shifts () up (down) causes

 to increase (decrease). The Appendix proves the following:

Lemma 5 An increase in  shifts  () down; an increase in  shifts  ()

down if   ̄ and up if   ̄.

Based on these observations, it is immediate that





 0,




 0 and




 0

This accords well with intuition: when  is higher, we get fewer producers.

However, it is also immediate that

  ̄





 0,




 0 and




 0

  ̄





 0,




 0 and




 0

The case   ̄ should be surprising: why are there more middlemen when 

is higher? This is answered in Section 4 in the context of efficiency.
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In terms of bargaining power, one can check that an increase in  or  shifts

 () up, raising  and  while lowering , as again accords with intuition.

However, just like , an increase in  can shift  () up or down depending

on the sign of  ̄, and therefore

  ̄





 0,




 0 and




 0

  ̄





 0,




 0 and




 0

The reason that an increase in  works much like a decrease in  is that

both make intermediation more profitable, with  operating during the search

process and  operating during the bargaining process.
8

We now bring back the terms of trade, y. In direct exchange, where  gets

 from  ,  =  is independent of the sunk storage costs, and increasing

with  ’s bargaining power and ’s valuation. In wholesale trade, where  gets

 from  ,

 =  (1 0) =
 ( )

 +  + 



The endogenous  is left on the RHS to illustrate a point: there is a direct

impact on  from , but not from ; plus there are indirect effects from both

through n. Similarly, in retail trade, where  gets  from  ,

 =  (+ 0 1) = 
 ( )

 +  + 



One can check   0,   0 and   0, where  =

  is the spread. Less straightforwardly,   ̄ implies   0,

8For completeness we mention how the other parameters affect n. The effect of , like ,
depends on :   ̄ implies   0,   0 and   0, while   ̄
implies   0,   0 and   0. A demand increase on the intensive margin,
captured by higher , is less clear: Since what matters is  and , raising  has the
same impact as lowering both  and . If   ̄ then higher  raises  and lowers ;
if   ̄ then the effect can go either way. Similarly ambiguous is an increase in demand on
the extensive margin, captured by higher .
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  0 and   0, but   ̄ implies the effects are ambiguous.

Some changes in bargaining powers are ambiguous, too, while others are not. In

any case, the results would be different if n were exogenous, as then the indirect

effects vanish. This is one reason to study occupational choice. Another is to

examine the welfare implications.

4 Efficiency

We now solve a planner’s problem, where for simplicity the focus is on  0.

The problem is to choose
¡
 

 


¢
to maximize:9

 = ( ) + ( )

Consider first   , which means intermediation is not viable, because it

contributes negatively to  . Given    we have:    implies 
 = 0

and the market shuts down; and    implies 
 = 1  and the market

opens with direct trade only.

Next consider   , which means intermediation is viable but may or

may not be optimal. Eliminating  and  we reduce the planner’s problem to

max
∈[0̄]

½
 



1 
 

1  

1 


¾


After simplification, the derivative of the objective function is proportional to

 () = (1 )2( ) + ( ) (10)

which is a quadratic and decreasing in  over the relevant range.

9The first (second) term is the net social surplus from direct (indirect) trade. Similar to the

related analysis in Nosal et al. (2015), one can solve the dynamic problem with   0 and, as
usual, the outcome is the same as maximizing  when  0. Also, as is standard 
when  0, but  and  are well defined. Of course, small  can be interpreted as saying
search frictions are not overly severe.
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from equilibrium, where    is neither necessary nor sufficient for   0.

It is also different from models with fixed n. In such models, if  is close to 

it is always a good idea for  to trade  to  , so  can produce another unit,

and put more  on the market. The economics is different here, because  can

turn into  and produce on his own. This is summarized as follows:

Proposition 2 The efficient outcome exists and is generically unique, as shown

in Fig. 2.

Before further comparing the efficient and equilibrium outcomes, consider the

effects of parameters on the planner’s solution when  (0 ̄). First,





 0,






 0 and






 0

which is similar to the equilibrium result, and intuitively clear. Next,

  




 0,






 0 and






 0

  




 0,






 0 and






 0

which is similar to the equilibrium result, and again surprising. To explain why

higher  can lead to more middlemen, the following is useful:

Lemma 7 For all parameters, (
)  0.

Here is the economic explanation: If  increases, the natural response is to

reduce inventories held by , given by , but there are different ways to do so.

One is to reduce , which in steady state means higher ; the other is to reduce

, which means higher . When    it is optimal to use the extensive

margin and reduce ; when    it is optimal to use the intensive margin

and reduce , which means higher . This explains the planner’s choices. The
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idea is similar for equilibrium, but less transparent, as complications can make

that different from the efficient outcome, as we now discuss.

Equilibrium can involve too many type  and too few type  , or vice versa.

In the shaded region in the left panel of Fig. 2, between () and (), we

have   0 = 
 and equilibrium has too many middlemen. There is also a

region where equilibrium has too few. The situation in the right panel, drawn

for different parameters, is similar. Also, even if the equilibrium and efficient

outcomes are both class 2, we only get  = 
 if bargaining powers are just

right. To see this, define 
0 , 

1 and 
2 as the sets of ’s where the efficient

outcome is class 0, class 1 and class 2, respectively. Then we have:

Proposition 3 Equilibrium is efficient iff  =  = 1 and: (i) ( )


0  = 1; (ii) ( ) 

1  = 0; and (iii) ( ) 
2

 =
(1 )(1  )

(1 )(1  ) + [1 ( )( )]
(0 1)

Heuristically,  = 1 and  = 1 avoid holdup problems associated with the

costs  and , which are sunk when  and  deal with the end user . For

, there is also a holdup problem when  deals with  , but in this case other

forces come into play. When someone chooses to be type  , he considers his own

benefit and cost, but neglects the fact that at the margin he makes it harder for

other  ’s to meet  ’s and easier for  ’s to meet  ’s. In addition, having more

 ’s increases , and that makes it harder for a type  agent to trade when he

does meet  ’s. Balancing these considerations delivers .

5 Concavity

Now suppose  00 ()  0, while continuing to assume  (0) = 0. It is interesting

to go beyond linear (transferrable) utility, for various reasons, but here is a big
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one. Let ̂  0 solve  (̂) = ̂. If an equilibrium payment is   ̂ then the

transfer is such that the cost to the payer exceeds the value to the payee. Hence,

  ̂ discourages, and symmetrically   ̂ encourages, intermediation. This is

because indirect trade entails two payments,  to  and  to  , rather than

one,  to  . The nonlinear specification can be interpreted as transaction costs

in the settlement process. Note   ̂ is possible, since even with  ()  

the surplus can be positive due to the gains from trading . Indeed, we do not

impose  0 (0)  1, so it may be that  ()     0.

For tractability, with  00  0, we use Kalai’s (1977) bargaining solution: when

 trades with , maximize ’s surplus subject to  getting a share  of the total

surplus.10 Then we have

 =  [()  + ] + (1 ) [()  + 1 0] 

0 =  [()  + 1 0]

1 =  [()  + + 0 1] 

 =  [()  + ] +  [()  + + 0 1] 

For simplicity, and efficiency, set  =  = 1 so that  = 0 and  =  = .

Then let  = () and simplify the above equations to

 =  + (1  ) ()  (13)

0 =
 (1 )

(1 )
 () (14)

1 = ( + 0 1)  (15)

The solution method mimics that used above, although the algebra is more

involved, which is why we use  () =  as a benchmark model. The analog to

10This is not the definition of Kalai bargaining, it is a result about the outcome implied by

his axioms, like maximizing the Nash product is a result about the outcome implied by his

axioms. If  () = , Nash and Kalai are the here; with  00  0, while we could use Nash,
Kalai has some advantages (as Aruoba et al. 2007 argue in the context of a related model).
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Lemma 1 (with the proof left as an exercise) is:

Lemma 8 A (subgame perfect) class 0 equilibrium exists iff   and 

(), where

()  + (0)(1 ) (16)

and 0 is given by the bargaining solution for  with  = 0.

Notice  ()



Figure 3: Equilibrium in ( ) space

With a general  () we cannot eliminate  from the equilibrium condi-

tions, so we work with two curves in ( ) space representing bargaining and

occupational choice. Setting 0 =  implies a quadratic we can solve for

 =
[2 (1 ) + ] () + 

¡
 

¢ p
̃

2 ()
(18)

where ̃ is the discriminant. This defines a function  = (), for occupational

choice. One can check  ' ( ), where  '  means  and  have

the same sign. As shown in Fig. 3, this traces a curve in ( ) space that

slopes up or down, depending on the sign of  , but for all parameters

lim→∞() = ̂ (0 ̄).

Next, using (14)-(15) to solve for 1 0 and eliminating it from the Kalai

solution,  () =  [() + 1 0], we get  = (), for bargaining.

In fact, it can be solved for  = −1 () explicitly:

 =
 ( ) Υ

 ( ) Υ+  (1 ) ()
(19)

whereΥ ( + ) [ + (1 ) ()]. This traces a downward-sloping

curve, as shown in Fig. 3. The Appendix proves the following results:

17





Figure 5: Effects of  in the nonlinear model

by the dashed and solid curves crossing; this is because nonlinearity tends to

discourage intermediation when   ̂ and encourage it when   ̂. In the

right panel of Fig. 4, the solid curves are ,  and 0 as functions of  for the

nonlinear model, while the dashed curves are for the linear model. The impact

of  is shown in Fig. 5, where higher  implies lower (higher)  in the left

(right) panel. These are general results, as was the case in the linear specification,

as can be proved using the following easily-verified result:

Lemma 13 An increase in  shifts the  curve down and does not affect the

 curve in Fig. 3, while an increase in  shifts the  curve down and does not

affect the  curve.

6 Dynamics



become type  , but agents cannot start as type  with their own output, say,

because they must spend  to acquire the middleman technology. Here we work

with the ’s, rather than , since 1 is a state variable, with law of motion

̇1 = 0(1  1 0) 1 (20)

In contrast, 0 can jump at any time to satisfy occupational choice, 0 = , just

like vacancies jump in the well-known labor-market model of Pissarides (2000).

The bargaining solution for  is

() = [()  +∆] (21)

and the analogs to (13)-(15), without imposing steady state, are

 =  + 0()  + ̇ (22)

0 = (1  1 0)
1 


() + ̇0 (23)

1 = ( ∆)  + ̇1 (24)

We now reduce this dynamic system to something manageable. First notice

that  = 0 implies ̇ = ̇0, and then from (22)-(23) the occupational choice

condition becomes

 + 0()  (1  0 1)
1 


() = 0 (25)

Next, subtracting (23)-(24), we get

∆ = ( ∆)  + ∆̇ (1  0 1)
1 


() = 0

Substituting (25) and simplifying, we arrive at

∆̇ = ( + )∆+   + 0() (26)

20



Figure 6: Saddle path stability

Then (20) and (26) define a two-dimensional system in (1∆) space, where 0

and  are functions of (1∆) given by the free entry and bargaining conditions.

In Section 5 it was verified there exists a unique steady state, which is the

intersection of the curves along which ̇1 = 0 and ∆̇ = 0. These curves have

slopes after simplification given by

∆

1
|̇1=0 =

[(0 + ) + (1  1 20)(1 )] [(1 )
0 + ]

(1  1 20)
 0

[(1 )(1  1) 0]

∆

1
|∆̇1=0

=
(1 ) [(1 )

0 + ]

( + ) [(1 ) 0 + ] +  0(1 )(1  1)


The slope of the ∆̇ = 0 curve is strictly positive. The slope of the ̇1 = 0 curve

can be positive or negative, but if it is positive one can check it is steeper than

the ∆̇ = 0 curve. Also note that ̇11  0 and ∆̇1  0. Hence, the

system looks like Fig. 6. Whether the ̇1 = 0 curve slopes down (left panel) or

up (right panel), the steady state exhibits saddle path stability.

Proposition 5 The class 2 steady state is a saddle point.

Therefore, given an initial condition for ̄1, there is a unique initial ∆̄ such

that (1∆) transits to the steady state, and any ∆ 6= ∆̄ implies an explosive
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path that cannot be an equilibrium. So equilibrium, not only steady state, is

unique — which was not a foregone conclusion.12

7 Negative ’s

The theory applies to many types of middlemen with comparative advantage in

storage or bargaining. But storing inventories is not always costly. Suppose  is

producing and  is dealing in fine art. Then the net benefit of holding  can be

 =   0, given art generates positive utility. If   , e.g., an art dealer,

perhaps by charging admission to his gallery, gets more from the piece than the

artist. If an art consumer/collector  enjoys it even more,  may retrade it,

or he may prefer to keep it — an option not relevant in the baseline model with

  0 (note that  never prefers to keep , regardless of , since as soon as



estate flipping. All of these applications make it interesting to consider   0.

Moreover, in terms of theory,   0 generates some novel results.

The dynamic programming equations are the same, but we need a new en-

dogenous variable  , for the probability that  trades  to . Also, 1 is still

 ’s payoff to holding  with the intention of trading it to , but he actually

prefers to keep it if 1  . It is now possible in principle to have  = 1 

and  = 0, but if so, then  must hold on to  (if he trades it he never gets 

again since  = 0); in this case the no-deviation condition is   since

the relevant deviation is to become type  . Hence we have this:

 =

⎧⎪⎨⎪⎩
0 if   0

[0 1 ] if  = 0

1  if   

and  =

⎧⎪⎨⎪⎩
0 if 1  

[0 1] if 1 = 

1 if 1  

The other change is that the possibility of   1 makes the steady state condition

 =
1  

1   + 


We study steady state equilibria in terms of  and , with  () =  to

ease the presentation. There are 9 candidates, shown in Table 1, none of which

correspond to a class 0 outcome because production always dominates nonpar-

ticipation with   0. If  = 0, in the first row of Table 1,  = 1 corresponds

to a class 1 outcome in the baseline model, where there are no type  agents on

the equilibrium path, but if there were, off the equilibrium path, they set  = 1.

We call this a class 1 equilibrium ( indicates  trades ). Similarly, if  = 0

we call  = 0 a class 1 equilibrium, because if there were a type  with 

he would not trade it to  ( indicates  keeps ). And if  = 0 we call

 (0 1) a class 1 equilibrium ( indicates  randomizes), but in fact this can

be ruled out:  only chooses  (0 1) if he is indifferent, which might happen

if  (0 1 ) is set endogenously, but generically not if  is 0 or 1 .
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\ 0 [0 1] 1

0 1 × 1

[0 1 ] 2 2 2

1  × × ×
Table 1: Candidate equilibria with  =   0.

One can also rule out  = 1  and either  (0 1]: if  = 1  there

are no producers, so trading away  leaves  with a continuation value 0, which

implies a profitable deviation because he can become type  . We cannot rule out

 = 1  and  = 0, but we ignore it in what follows because it is a degenerate

outcome with no production.13 The remaining candidates are  [0 1 ]

and  = 1,  = 0 or  (0 1), called class 2, 2 or 2 (there are both type 

and  , and  either trades , keeps it or randomizes). The following is proved

in the Appendix and illustrated in Fig. 7.

Lemma 14 The Appendix defines (·), (·), (·), eand ∗. Class 1
 equilib-

rium exists iff  (0) (). Class 1
 exists iff ()  (0). Class

2 exists iff  () (). Class 2
 exists iff ()    (1 ). Class

2 exists iff ∗  ().

The left panel of Fig. 7, with e  0, is simple:   
¡


¢
 = 0; and

  
¡


¢
   0, but type  agents keep . In the right panel, with

e  0, those outcomes are still possible, but so are class 2 and 2, with active

intermediation. Clearly we lose uniqueness. Is there something about financial

intermediation that contributes to this? Yes. Heuristically, the multiplicity is due

to a strategic complementarity. When  keeps  with probability 1   0, the

13This equilibrium, with type  agents simply sitting on , can be shown to exist iff 
(), where  (·) is defined below. When it exists, there coexists another equilibrium, so we do
not need it to establish existence. However, we ignore it mainly to avoid cluttering the graphs;

we do not claim it should be ignored based on stability considerations, even if one might ask,

how can all the  ’s be holding  when there are no  ’s to produce it? The answer is that
  0 along the transition path, with  0 only as  .
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8 Conclusion

This project has continued the development of search-and-bargaining theories of

intermediation. We built on the classic model of Rubinstein and Wolinsky (1987),

extended to allow general bargaining powers and costs, but rather than fixing the

numbers of producers and middlemen we let agents choose their types. This is

natural for investigating many issues.14 The theory delivered clean and sometimes

surprising results — e.g.,   0 is possible, for reasons explained above.

We established existence and generic uniqueness for the baseline model, although

with   0 an interesting multiplicity can emerge. We discussed how middlemen

can be essential, and showed equilibrium is efficient iff bargaining powers are just

right; otherwise there can be too much or too little intermediation. Extensions

including strictly concave utility and dynamics were presented.

Many other extensions and applications should be possible. Clearly one would

like to go beyond unit inventories, just like it was desirable to move beyond unit

inventories in monetary models like Kiyotaki and Wright (1993). This has been

accomplished in search-based theories of money and finance by several authors

using a variety of techniques (again see Nosal and Rocheteau 2011 or Lagos et

al. 2015). Something similar could work for middlemen, too, if one were willing

to adopt similar assumptions. This is left for future work. Based on the results

developed here, we think the framework should become a benchmark model in

intermediation theory, and in search theory more generally.

14One issue is that the only way to get more intermediaries here is to have fewer producers,

capturing a very real economic trade-off (e.g., more MBA’s means fewer engineers). Also, our

setup eliminates some effects in earlier models that are artifacts of simplifying assumptions,

one of which concerns the restriction of  ’s inventory be 0 or 1. In other models, when 
takes  ’s good, the latter can produce again, leading to more output. That is not relevant here,
because if  does not take  ’s good, he can become a producer and make his own . Hence,
intermediation is useful not merely because it gets around the unit-inventory restriction. Other

features of the model also allow one to consider additional issues, including  00  0, which
captures the idea that payments are not necessary perfect (linear), and this naturally affects

the incentives to engage in intermediation. Dynamics are also interesting, with ,  and 
varying along the saddle path over time, somewhat similar to Weill (2007).
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Appendix

Here we provide proofs for results that are not obvious.

Lemma 1: Class 0 and class 2 equilibria coexist in the region where 

̄ and   (), but we claim the former is not subgame perfect. Notice

  ̄ in this region, and consider a class 0 candidate equilibrium. Suppose a

nonparticipant deviates and produces. When he meets another nonparticipant,

which happens with positive probability, that agent has a strict incentive to

accept his good and act like type  because   ̄ (i.e., it is not credible to

think he would reject it). This constitutes a profitable deviation. ¥

Lemma 3: There are three ways for a convex () = 0 to have solutions in

(0 ̄): (a) one root with (0)  0  (̄); (b) one root with (0)  0  (̄);

(c) two-roots, which requires (c1) (̄)  0, (c2) (0)  0, (c3) 0(̄)  0, (c4)

0(0)  0, and (c5) (∗)  0, where 0(∗) = 0. Notice that

(0) = (1 )(̄ 

�� ¥

Lemma 3�y

� �



) )

))

Figure 8: The functions () and ()

(c3) and (c4) are satisfied. The parameter set consistent with the conditions c(1),

c(3) and c(4) is given by S1 {( )|0   ̄ ()    
¡


¢},
shown in the right panel of Fig. 8

Similarly, let S2 be the set consistent with (c5). To characterize S2, the
discriminant of (), , can itself be written as a quadratic in  given ,

̂(|) = ̂1
2
 + ̂2 +̂3, where

̂1 = 
2 + 4(1 )

̂2 = 2̄[
2 + 4(1 )]

2(̄ )[( +  )(1 2) 2]

̂3 = ̄2[
2 + 4(1 )] + (̄ )

2( +  )

+2̄(̄ )[( +  )(1 2) 2]

Since ̂1  0, ̂ is strictly convex. Also, it is straightforward to show that

̂(̄|)  0  [0 ̄). Thus, since ̂ is strictly convex and ̂(̄|)  0,

S2 6= ∅ ̂(0|)  0 ̂3  0, as shown in the left panel of Fig. 9.

It can be shown that ̂(|̄)  0  [0 ̄) and ̂(̄|̄) = 0. Since

̂ is continuous in ( ), ̂(|)  0 for some   ̄ if ̄  is small.

The admissible set of  for which ̂(|)  0 is pinned down by the lower

root of ̂(|) = 0 being positive, i.e., −() = ( ̂2 Λ)2̂1  0, where

Λ = ̂22 4̂1̂3  0. One can show −()  0 ̂2  0   

with




̄ + ̄[ + 4(1 )][( +  )(1 2) 2]
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Figure 9: The functions ̂(|) and ()

Hence, for a given , the set of  such that ̂(|)  0 is [0 −()).

Therefore, S2 = {( )|
   ̄ 0    −()}. Suppose for a given

 there exists −()  0 such that ̂(−()) = 0. We express the lower root

as −() = (), where

() ̄ + (̄ )
[( +  )(1 2) 2] Λ


2 + 4(1 )



One can show 0()  0. The right panel of Fig. 9 depicts  = (),  =

() and  = (). Since ̂   0    (), a necessary condition

for case (c) is 0()  0(), as in the right panel of Fig. 9.

Hence, (c) requires S1 S2 6= ∅ and 0()  0(). But the latter inequality

can be simplified to

( )[ + 4(1 )]  [( )(1 2) 2]

{[( )(1 2) 2]
2

( )[ + 4(1 )]}12

when we ignore terms with , which only strengthens the inequality. This in-

equality implies

1 + ( )  4 + 4(1



Lemma 5: It is straightforward to derive  ()   0, so consider the effect

of . In the particular case of  = ̄, the relevant root is

 =
2(1 ) +  [4(1 )(1 ) + 2 ]

12

2
̃

Hence,  = 0 when  = ̄. More generally,

 ()



= + [2(1 ) (1 ) 2]

which vanishes when  = ̃ or  = ̄. Moreover,





()



¯̄̄̄
=̃

=  + 2(1 ) 2  0

where  = ̃ is inserted after the derivatives are taken. This implies   0

if   ̄ and   0 if   ̄. ¥

Lemma 7: As () = ()× we need to sign ().

Notice  =  (1 ), which implies

()


' (1 )2  '  

where the second equality uses (10) to eliminate (1 )2 and  '  means 

and  take same sign. When   ,   0 and ()  0, so

()  0; when   ,   0 and ()  0, so again

()  0. ¥

Proposition 3: The efficient and equilibrium outcomes only correspond in gen-

eral if  =  = 1, as that needed for ̄ = ̄ = . Given  =  = 1,

() =
2+ [1  (1 )]

(1 ) (1 )

() =
[ +  (1 )] 

(1 ) 


If  = 1 then () = 0(); so for ( ) 
0 ,  = 

 = 0. If  = 0

then () =  0(); so for ( ) 
1 , again  = 

 . If  (0 1) then

 () implies   () and  () implies  (). If we set
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 =  = 1 and equate the roots of (8) and (10), so that  = , we get .

To check  (0 1), note the numerator is positive since   1 , and the

denominator is even bigger since 
  0 requires   . ¥

Lemma 10: There are again three ways for ̃( ) = 0 to have a solution in

(0 ̄): (a) one root with ̃(0 0)  0  ̃(̄ ̄); (b) one root with ̃(0 0)  0 

̃(̄ ̄); and (c) two roots, which requires (c1) ̃(0 0)  0, (c2) ̃(̄ ̄)  0, (c3)

̃( | = ̄)  0, (c4) ̃( | = 0)  0, and (c5) ̃(∗ ) 

0, where ̃(∗ ) = 0. Notice

̃(0 0) = [  + (0)(1 )]

̃(̄ ̄) = [( ) (̄)(1 )(1 )]

As in Lemma 3, it is easy to check that case (a) is not possible.

Turning to case (c), (c1) implies   () and (c2) implies    ().

For (c3) and (c4), we have

̃( )


= 2() ( ) ()[ + 2(1 )]

We need this positive at  = ̄, which means     (̄), and

at  = 0, which means    + (0)[ + 2(1 )]. Given (c2),

(c1) and (c4) are not binding. Also, (c2) and (c3) imply  is between  and  ,

which holds iff   (1 2)  (1 ). Assume this is true and consider (c5).

To get ∗, solve  = 0 to get

̃(∗ ) ' ( )[( ) + 2()(1 2)]

()
2[1 + 4(1 )(1 )]

We need ̃(∗ )  0. Although it is an abuse of notation, let ̃(∗ )

̃()  0 where

̃() = 2 + 2[()(1 2) + ] 2
2

2()(1 2) ()
2[1 + 4(1 )(1 )]

For (c5) we seek the set of  such that ̃()  0. There are three possibili-

ties: (c5.1) one root with ̃()  0  ̃( ); (c5.2) one root with ̃()  0 

̃( )



and ̃(∗)  0, where ̃0(∗) = 0. Given  =  and   = (̄),

̃() = (̄)2
2


[1 + 2(1 2)] (̄)2[1 + 4(1 )(1 )]  0

Given  =  () and   = (̄)(1 )(1 ),

̃( ) ' (̄)2{(1 )(1 )[1 +  (1 + 3) + 4
2
] + }  0

for (1 2)(1 )    0. This rules out (c5.1) and (c5.2). To check

(c5.3), consider

̃0() = 2 + 2[()(1 2) + ]

Now ̃0()  0 at  = , and ̃0()  0 at  =  (). As ̃0( )  0

violates (c5.3), there is no ∗ between  and  such that ̃(∗)  0. ¥

Lemma 11: We need  and  in Fig. 3 cross at ( ) (0 )× (0 ̄), plus

  . For  (0 ̄), we check ̃(0 0)  0  ̃(̄ ̄), where 0 = (0)

and ̄ =  (̄). Now ̃(0 0)  0 iff   (). At  = , bargaining

implies 0 = 0, and   () becomes   . As we lower ,

　

　　



Lemma 12: In class 2 equilibrium we have

 =
 ( + ) (1 ) ()

  (1 ) ()
∗

with  =  ( ) ( + )   0, from the bargaining solu-

tion. Note   0   ( + ) (1 ) (), and   ̄  

(1 + ) (1 ) (). Then

()



=
 0

¡
 

¢

p

̃
(1 )

−1()



=
 (1 )

[  (1 ) ]2
[ 0 +  ( + ) ]

If    the equilibrium is obviously unique. If   , we claim

  −1 when they cross. To verify this, insert  = ∗ to get

()



=
 0

¡
 

¢p
̃

 (1 )

  (1 )


where ̃ is the discriminant of ̃( ). Using (18) to replace
p

̃ and inserting

 = ∗, we get

()



=
 0

¡
 

¢
 (1 )

[  (1 ) ]Ω


where

Ω [2 (1 ) + ] + 
¡
 

¢ 2 [ ( + ) (1 ) ]

  (1 )


In equilibrium,  =  ( ) ( + ) ∗ and  = (∗) solves

 [ ( + ) (1 ) ]2 + [  (1 ) ]2[  + (1 ) ]

= [ ( + ) (1 ) ][  (1 ) ]{[2 (1 ) + ] + 
¡
 

¢}
Routine algebra implies () −1() is proportional to


¡
 

¢
[  (1 ) ][ 0 (1 ) + ( + ) ]

+[ 0 +  ( + ) ]{[  (1 ) ] + 2[(1 + ) (1 ) ]}
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Since (1 + ) (1 )     (1 ) , in equilibrium, this is positive, thus

establishing the desired result. ¥

Lemma 14: We consider each class of equilibrium from Table 1 in turn. Consider
first a class 1 equilibrium, where  =  = 0 and

 =  

0 = (1 ) (1 0)

1 = (+ 0 1) 

Now 1  iff  (0), where () [ + (1  )] and

 0 iff  (). Hence, the equilibrium exists under the stated conditions.

Similarly, class 1 equilibrium exists iff  (0) and  ().

Now consider  = 0 and  (0 1 ), a class 2
 equilibrium, which

requires 1  and  = 0. The latter solves for

 =
(1 )( ) [ +  + (1 )]( )

(   + )


One can check   1 . Also,   0 requires either: (i) the denominator and

numerator are both positive, which is true iff   (); or (ii) they are both

negative, which is true iff   
¡


¢
 + . We also need 1 ,

which is true iff

() = 2 + [ (  + )] (+  ) 0

Note () is convex,  (0)  0 and(∗)  0 where ∗  0 solves 0(∗) = 0.
Thus, () 0 iff  (), where where ()

¡
+ ̄

¢
+  is the

lower root of (). Note it is linear and lies below 
¡


¢
; hence,   

¡


¢
cannot occur. In sum, the equilibrium exists iff  () ().

Now consider  = 1 and  (0 1 ), a class 2
 equilibrium. This requires

1  and  = 0. The latter reduces to ̄() = ̄2 + ̄ + ̄ = 0,

where

̄ = [ 
¡


¢
]

̄ = (2 )[ 
¡


¢
] ( + )( ) + ( )

̄ = (1 )[ 
¡


¢
] + ( + )( )
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As usual, the upper root and two root case are not possible, so consider the lower

root . Now   0 exists iff   
¡


¢
, and   1  iff   

¡


¢
. Since


¡


¢
 

¡


¢
, the binding condition is   

¡


¢
.

Next, to check 1 , substitute the root of ̄() = 0 into  ()

to get a cubic () = 3 + e2 +
e + e 0, where

e = ( 2) 
¡


¢
e = 2[ + (1 )][(1 )  + ] + 22(1 )

+{ ( )( + ) + (2 )
¡


¢
2[ + (1 )]

¡


¢}e = 22(1 )
¡


¢
+ 2( )( + )

+2[ + (1 )][ ( )( + ) + 
¡


¢
( )]

To solve the cubic, we employ Cardano’s method (see Jacobson 2009, p. 210).

First, rewrite () = 0 using the transformation  =  + e3 to get

3 +
3e e2
3

 +
2e3 9ee+ 27e

27
= 0

Cardano’s method implies there is one real root given by

∗ =
3

vuuutee
6

e
2

e3
27
+

vuutÃee
6

e
2

e3
27

!2
+

Ãe
3

e2
9

!3

+
3

vuuutee
6

e
2

e3
27

vuutÃee
6

e
2

e3
27

!2
+

Ãe
3

e2
9

!3


One can show ∗ = ∗ e3  0, (0)  0, and  0 ()  0 for 0   ∗.
Therefore, given a unique root ∗  0, it is clear that  () 0 for  ∗;
hence 1  holds, iff  ∗. To summarize, this equilibrium exists iff

∗  ().

Finally, consider  (0 1) and  (0 1 ), a class 2
 equilibrium. This

equilibrium requires 1 =  and  = 0. Now 1 =  solves for

 =
 + [ + (1 )]
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Note 0    1  requires (0)    (1 ). Then  = 0 solves for

 =
( + )( + +  )

[ + + ( ) + (1 )]

Imposing   (1 ) = ,   0 requires   () and   () if

 e  (1 ). When e  0,   () cannot occur.

The condition   1 requires ()  0, where () = 2 +  + , with

 =   + 2 

 = (  + ) [+ ( ) + (1 )]

One can show (∗)  0 where ∗ is the solution to 0(∗) = 0. There are two
cases. (1) if ∗  0 then one can show (0)  0, and ()  0  ()

where () is the lower root of (). (2) if ∗  0 then (2.1) if (0)  0,

()  0  (); (2.2) if (0)  0, then ()  0 () 

(), where () is the upper root of () = 0. However, since   ()

and ()  (), ()  is not binding. So,   1 requires  (). To

summarize, the conditions for 0    1 are   (),   () if  e,

and  (). Note that () and () intersect at e, with 0()  0,

which is less than 0(). Therefore, the binding constraints for this equilibrium

are ()    (1 ) and  e. ¥
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