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Speci�cation Analysis of Structural Credit Risk Models 1

1. Introduction

A widely used approach to credit risk modeling is the so-called structural method, origi-

nated from Black and Scholes (1973) and Merton (1974). A growing literature has empir-

ically examined the implications of structural models for various �nancial variables, such

as credit spreads (Eom, Helwege, and Huang, 2004), real default probabilities (Leland,

2004), both spreads and default rates (Huang and Huang, 2012), hedge ratios (Schaefer

and Strebulaev, 2008), corporate bond return volatility (Bao and Pan, 2013), and prices

of di�erent seniority levels (Bao and Hou, 2017). The main empirical methods used in this

literature include calibration, rolling estimation, and regressions. Although these methods

are intuitive, easy to implement, and widely used, it is known that, from a statistical point

of view, they have some limitations.

In this paper, we propose an alternative approach to testing structural credit risk mod-

els. More speci�cally, we construct a speci�cation test based on certain model-implied

variables, such as credit spreads and equity volatility. By assuming that both equity and

credit markets are e�cient and that the underlying structural model is correct, we obtain

moment restrictions on model parameters (e.g., asset volatility and default boundary). We

then use generalized method of moments (GMM) of Hansen (1982) to conduct parameter

estimation as well as speci�cation analysis of the structural model. Three aspects of this

GMM-based speci�cation test are worth noting. First, the test provides consistent econo-

metric estimation of the model parameters. Second, the test allows us to conduct a precise

inference on whether the model is rejected or not in the data. Third, the test is based

on the joint behavior of time-series asset dynamics and cross-sectional pricing errors for

structural models.

For illustration, we apply the proposed approach to �ve a�ne, representative structural

models of default that incorporate various economic considerations. For each of the �ve

models, we construct its moment conditions using equity volatility and term structures of

single-name credit default swap (CDS) spreads. We then test whether all the restrictions

of the model are satis�ed using the GMM, based on the model implied CDS spreads

and equity volatility. By minimizing the e�ect of measurement error from using �rm

characteristics, this test attributes the test results mostly to the speci�cation error. Lastly,
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we examine the ability of the model to explain equity volatility, the CDS term structure,

default rates, sensitivity of CDS spreads to equity returns, etc.

For the purpose of this study, using CDS data has at least two advantages over using

corporate bond data. One is that CDS spread curves are readily available. The other is

that in general the CDS market is more liquid than the corporate bond market. We in-

clude equity return volatility in moment conditions mainly because few empirical studies

have examined the implications of structural models for this second moment variable.1

In other words, while equity volatility is usually used as an input in the empirical litera-

ture on structural models, this study treats equity volatility as an output of the models.

Additionally, we use the so-called \model-free" realized equity volatility in our empiri-

cal analysis. As it is estimated using intraday high-frequency equity returns and involves

no overlapping observations, realized volatility is more accurate than volatility estimates

based on daily or monthly returns. Moreover, the use of the latter estimates implies that

structural models are implicitly assumed to be able to �t perfectly the time series of equity

volatility involving overlapping observations. Lastly, focusing on realized equity volatility

is consistent with the evidence that volatility dynamics has a strong potential in better

explaining credit spreads (e.g., Zhang, Zhou, and Zhu, 2009).

For reasons of tractability and comparison, we focus on the Merton (1974) model and

its four extensions with an exogenous default boundary in this study. The four barrier-

type models include the Black and Cox (1976) model with a at default boundary, the

Longsta� and Schwartz (1995) model with stochastic interest rates, the Collin-Dufresne

and Goldstein (2001) model with a stationary leverage, and the double exponential jump

di�usion (DEJD) model used in Huang and Huang (2002) and Kou (2002).2

1 There is ample empirical evidence that individual equity volatility is time-varying and
stochastic (see, e.g., the survey articles by Bollerslev, Chou, and Kroner, 1992; Bollerslev,
Engle, and Nelson, 1994). This stylized fact should be taken into account in examining
structural models that consider equity to be a contingent claim on the underlying �rm
asset value.
2 Kou (2002) develops the �rst DEJD-based equity option pricing model. Concurrently,
Ramezani and Zeng (2007) use the DEJD to model individual stock returns. Huang and
Huang (2002, 2012) provide the �rst application of the DEJD model in credit risk. Other
examples using the DEJD-based structural model include Cremers, Driessen, and Maen-
hout (2008); Bao (2009); Chen and Kou (2009).
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We test each of the �ve models using a sample of 93 industrial companies in the U.S.

that have a balanced panel of monthly realized equity volatility and CDS term structure

over the period January 2002{December 2004. As the main purpose of our empirical

analysis is to illustrate the proposed speci�cation test of structural models, the choice of

the sample period is not essential to the analysis. Nonetheless, this post dot-com bubble

(and also post the Enron collapse) period includes many major corporate defaults and

\actions." On the other hand, relatively \quiet" compared to the recent �nancial crisis,

this sample period is less subject to illiquidity concern documented for the corporate bond

market during the �nancial crisis (Dick-Nielsen, Feldh�utter, and Lando, 2012; Friewald,

Jankowitsch, and Subrahmanyam, 2012).

Our GMM-based speci�cation tests strongly reject the Merton, Black and Cox, and

Longsta� and Schwartz models. The DEJD model is found to signi�cantly outperforms

these three models. The Collin-Dufresne and Goldstein model is the best performing one

among the �ve models: the model is not rejected by the GMM test for more than half

of the 93 companies in our sample. Nonetheless, the fact that both the DEJD and CDG

models are still rejected by a substantial number of �rms in the sample indicates that

something is missing in these models.

The pricing error results from the �ve models provide similar evidence. On the one

hand, jumps and dynamic leverage help improve the model �t for investment-grade (IG)

and high-yield names, respectively. On the other hand, the �ve models all substantially

underestimate both equity volatility and CDS spreads for IG names during 2002 when

credit risk is relatively high. In other words, these models have di�culty in capturing the

dynamic behavior of both equity volatility and CDS spreads, especially for IG names|

even though equity volatility in structural models is time-varying.

Interestingly, all �ve models, especially the Merton model, fare better in describing the

sensitivity of CDS spreads to equity returns, in terms of the number of �rms where the

model-implied sensitivity is not rejected in our sample. Moreover, evidence from the actual

hedging performance indicates that the Merton model surprisingly outperforms the other

four models.

To summarize, this study contributes to the credit risk literature by proposing and

implementing a GMM-based speci�cation test of structural models. Importantly, this ap-

 Electronic copy available at: https://ssrn.com/abstract=968020 



4 Jing-Zhi Huang et al.

proach, among other things, makes use of the advantages of GMM|its convenience and

generality (see, e.g., Jagannathan, Skoulakis, and Wang, 2002). Our empirical �ndings

(albeit based on a short sample) shed light on how to improve the existing structural

models. Speci�cally, incorporating stochastic asset volatility and jumps into the Merton

(1974) model may improve the ability of the model to predict not only CDS spreads and

equity volatility but also hedge ratios of CDS spreads.3

The rest of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 briey outlines the class of structural models examined in our empirical analysis.

Section 4 presents our econometric method of parameter estimation and speci�cation tests.

Section 5 describes the data used in our analysis, and Section 6 reports and discusses our

empirical �ndings. Finally, Section 7 concludes.

2. Related Literature

Empirical studies of structural models go back to Jones, Mason, and Rosenfeld (1984),

who implement a rolling estimation approach. Examples of following this approach in-

clude Eom, Helwege, and Huang (2004), Hull, Nelken, and White (2004), Arora, Bohn,

and Zhu (2005), and Bao (2009). Huang and Huang (2002, 2012) propose a calibration

approach with representative �rms, which is also used in Chen, Collin-Dufresne, and Gold-

stein (2008), Schaefer and Strebulaev (2008), Du, Elkamhi, and Ericsson (2018), McQuade

(2018), and Shi (2019). Regression based studies include Collin-Dufresne, Goldstein, and

Martin (2001) and Zhang, Zhou, and Zhu (2009). Ericsson and Reneby (2005) and Pre-

descu (2005) combine a rolling estimation procedure with the MLE approach proposed in

Duan (1994).

3 Du, Elkamhi, and Ericsson (2018) incorporate stochastic volatility into the Merton
(1976) jump-di�usion model and �nd that the resultant SVJ model for the unlevered
asset value can jointly capture CDS spreads and option-implied volatilities; McQuade
(2018) shows that combining stochastic volatility with endogenous default sheds light on
many asset pricing anomalies, including the value premium, �nancial distress, and mo-
mentum puzzles. Both studies illustrate that a reasonable calibration for the variance
risk premium allows their stochastic volatility models to match historical corporate yield
spreads for medium and longer maturities, o�ering a potential resolution for the credit
spread puzzle (�a la Huang and Huang, 2012). Other recent studies of the puzzle include
Bai, Goldstein, and Yang (2018); Feldh�utter and Schaefer (2018).
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Among studies of structural models based on CDS data, Hull, Nelken, and White

(2004) implement the Merton (1974) model using a calibration approach. Predescu (2005)

examines the Merton model as well as a Black and Cox (1976) type barrier model. Chen,

Fabozzi, Pan, and Sverdlove (2006) investigate the Merton, Black-Cox, and Longsta�-

Schwartz models. Bao (2009) and Bai and Wu (2016) focus on the cross-section of spreads

implied by structural models. Examples of studies that link CDS premiums with variables

from structural credit risk models using a regression analysis include Ericsson, Jacobs,

and Oviedo (2009); Zhang, Zhou, and Zhu (2009).

This paper di�ers from the aforementioned studies in that it proposes and conducts

a GMM-based speci�cation test of structural models. Additionally, equity volatility is

treated as an output variable in the proposed test.

Our paper also �ts in the literature on the implications of structural models for second

moment variables (such as equity return volatility) as well as on their impact on credit

risk. For instance, Campbell and Taksler (2003) �nd that idiosyncratic equity volatility

can explain a signi�cant part of corporate bond yield spreads cross-sectionally. Huang and

Huang (2012) conjecture that a structural credit risk model with stochastic asset volatility

may help solve the credit spread puzzle. Huang (2005) considers an a�ne class of structural

models with both stochastic asset volatility and L�evy jumps. Based on regression analysis,

Zhang, Zhou, and Zhu (2009) provide empirical evidence that a stochastic asset volatility

model may improve the model performance. Perrakis and Zhong (2015) extend the Leland

and Toft (1996) model to allow for constant elasticity of variance. Kelly, Manzo, and

Palhares (2016) provide more recent evidence of stochastic asset volatility. See also Du,

Elkamhi, and Ericsson (2018) and McQuade (2018). In a closely related study, Bao and Pan

(2013) focus on corporate bond return volatility and document that the volatility implied

from the Merton (1974) model with stochastic interest rate underestimates substantially

the observed corporate bond return volatility.

The literature on hedge ratios implied by structural models goes back to Schaefer and

Strebulaev (2008), who �nd that on average, the Merton model-implied sensitivity of

a �rm’s corporate bond returns to its equity returns is not statistically di�erent from

the in-sample empirically estimated hedge ratios. Bao and Hou (2017) investigate how

a corporate bond’s position in its issuer’s maturity structure a�ects its sensitivity to
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the issuer’s equity return. They show that both the direction and the magnitude of this

de facto seniority e�ect are consistent with what are implied from an extended Merton

model. Huang and Shi (2016) examine the actual hedging performance of model-implied

sensitivities of corporate bond returns and spreads, which is equivalent to testing the out-

of-sample explanatory power of the hedging portfolio. Additionally, they document that on

average, the Merton model also captures the in-sample sensitivity of spreads to the equity

return. On the other hand, focusing on pairs of stock returns and CDS spread changes

with the same underlying over a short interval (e.g., �ve days), Kapadia and Pu (2012)

�nd that about 41% of stock returns are associated with CDS spread changes in the same

direction, as opposed to the prediction of the Merton model. This discrepancy is shown

to reect an imperfect equity-credit market integration at short horizons. Huang, Rossi,

and Wang (2015) �nd similar results based on pairs of stock and corporate bond returns

and also provide evidence that equity market sentiment helps improve the equity-credit

market integration especially after the �nancial crisis.

In this study we examine not only hedge ratios but also hedging performance of struc-

tural models. In addition, we go beyond the Merton model.4

As mentioned before, we use CDS data instead of corporate bond data in the empirical

analysis, partly to avoid the liquidity problem in the latter market. For recent evidence

on corporate bond illiquidity, see Bao, Pan, and Wang (2011); Chen, Lesmond, and Wei

(2007); Das and Hanouna (2009); Han and Zhou (2016); Helwege, Huang, and Wang

(2014); Longsta�, Mithal, and Neis (2005); Mahanti, Nashikkar, Subrahmanyam, Chacko,

and Mallik (2008); Schestag, Schuster, and Uhrig-Homburg (2016); Bongaerts, de Jong,

and Driessen (2017), among others. In addition, using term structures of CDS spreads

facilitates the implementation of the proposed GMM-based test|it is known that data

on term structures of corporate bond spreads are not easily available for individual �rms.

Lastly, note that there is a large theoretical literature on structural credit risk modeling

(see, e.g., Huang and Huang, 2012; Sundaresan, 2013, and references therein), although

for tractability and comparison we consider only �ve structural models in our empirical
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includes those without strategic default, such as Geske (1977) and Leland and Toft (1996),

and strategic default models, such as Anderson and Sundaresan (1996), Mella-Barral and

Perraudin (1997), Acharya and Carpenter (2002), and Acharya, Huang, Subrahmanyam,

and Sundaram (2006, 2019). Strategic default models of perpetual bonds are considered

in Huang and Huang (2012). Endogenous default models with �nite maturity of Geske

(1977) and Leland and Toft (1996) are examined in Eom, Helwege, and Huang (2004).

Another example not covered in this paper is the Du�e and Lando (2001) model with

incomplete accounting information. Additionally, Fran�cois and Morellec (2004) examine

the impact of the US bankruptcy procedure on risky debt prices. He and Xiong (2012)

and He and Milbradt (2014) consider both rollover risk and corporate bond illiquidity.

3. A�ne Structural Credit Risk Models

This section �rst reviews the �ve structural credit risk models to be tested in our spec-

i�cation analysis, and then apply the models to the CDS pricing. Lastly, we discuss the

model implications for equity volatility and sensitivities of CDS spreads to equity return.

3.1 Models

For completeness, below we briey review the �ve structural models to be tested in our

empirical study. Although these models di�er in certain economic assumptions, they can be

embedded in the same underlying structure that includes speci�cations of the underlying

�rm’s asset process, the default boundary, the recovery rate, etc.

Let V be the �rm’s asset process, K the default boundary, and r the default-free interest

rate process. Assume that, under a risk-neutral measure Q,

dVt
Vt−

= (rt − �)dt+ �vdW
Q
t + d

NQt∑
i=1

(
ZQi − 1

)− �Q�Qdt;Q+4Q�r−5−�) r t −

r�−= (4V Q dt; rQ= (5−

r Qdt + �Z Qdt;��r

r +V

QZQ
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with a constant intensity �Q > 0, the ZQi ’s are i.i.d. random variables, and Y Q ≡ ln(ZQ1 )

has a double-exponential distribution with a density given by

fYQ(y) = pQu �
Q
u e
−�Qu y1{y≥0} + pQd �

Q
d e

�
Q
d
y1{y<0}: (4)

In Eq. (4), paramet.7.390ae58.214 .9776 Tf 4.6217 Td [(�)]TJ/F23 5.9776 Tf 7.323 3.702 Td471Q
u�8Td [F23 5.9776 Tf 4.923 4.251 Td [(Q)]TJ -0.321 -6.908 Td [(d9.08/F22 8.9664 T 8.766 -3.254 Td [(>)]TJ9F21 5.9776q.)-4ariables, and27.5J/F35 5.974 Tf 15.732 0 Td [(p)]TJ/F23 5.9776 Tf 7.3202 Td471Q
u
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the CDS spread of a T -year CDS contract is given by

cds(0; T ) =
(1−R)Xt∑4T

i=1
B(0; Ti)Q(0; Ti)=4

; (6)

where R is the recovery and B(0; ·) the default-free discount function. Xt denotes the price

of the Arrow-Debreu default claim, or equivalently, the present value of one dollar paid

upon default

Xt = EQ
[
e
−
∫ �
0
r(u)du

I{�<T }

]
; (7)

where � is the default time, r the interest rate process, I{·} the indicator function, and

EQ[·] the expectation under the risk-neutral measure. To simplify the computation, we

follow the literature to make the standard assumption that the settlement of the contract

occurs on the next payment day. It then follows from Eq. (6) that

cds(0; T ) =
(1−R)

∑4T

i=1
B(0; Ti)[Q(0; Ti−1)−Q(0; Ti)]∑4T

i=1
B(0; Ti)Q(0; Ti)=4

: (8)

As a result, the implementation of a structural model amounts to the calculation of the

survival probability Q(0; ·). In the Merton (1974) and the Black and Cox (1976) models,

Q(0; ·) has closed form solutions. The survival probability in the DEJD model and the

two-factor models do not have a known closed-form solution but can be calculated using

a numerical method (see, e.g., Huang and Huang, 2012, for details).

In addition to CDS spreads, other model-implied credit market variables include CDS

spread changes, CDS volatilities, and corporate bond return volatilities, etc. However,

corporate bond volatilities have a sizable illiquidity component and CDS volatilities might

also be a bit high compared to fundamentals (Bao and Pan, 2013; Bao, Chen, Hou, and

Lu, 2015). Therefore, given the purpose of this study, we do not consider these second

moment variables in credit markets in our empirical analysis.

3.3 Equity Market Variables

In this subsection we focus on more liquid equity market variables, which have received

relatively little attention in the empirical literature on structural models.
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Consider equity return volatility �rst. As pointed out by Merton (1974), the delta

function relating the equity volatility and asset volatility is also model-dependent

�E(t) = �v
Vt
Et

@Et
@Vt

; (9)

where the equity volatility �E(t) is generally time-varying while the asset volatility �v

may be constant. For the DEJD process, the equity volatility of the continuous di�usion

component satis�es Eq. (9).

Next, we consider the comovement between CDS and equity, in order to better under-

stand the relative pricing of these two markets as well as the hedge of common exposures

across markets. Following Schaefer and Strebulaev (2008), we can express the sensitivity

of CDS spread to the equity of the �rm in terms of partial derivatives with respect to the

�rm value

�cds
E;t =

@cds(t; T )

@Et=Et
=
@cds(t; T )=@Vt
@Et=@Vt

Et: (10)

As illustrated in Section 4.1, both @cds(t; T )=@Vt and @Et=@Vt are functions of

@Q(t; ·)=@Vt, the sensitivity of risk-neutral survival probabilities to asset value. As such,

once Q(t; ·) is known, �cds
E;t can be calculated.

Unlike its counterpart for corporate bonds, the hedge ratio for a CDS contract is not

the same as its sensitivity to equity. Instead, the latter hedge ratio is de�ned as the dollar

change in the value of the CDS contract for each percentage change in the equity value

hcdsE;t =
@V cdst

@Et=Et
=
@cds(t; T )

@Et
EtZt; (11)

where V cdst denotes the time-t value of a CDS contract with a notional of $10 million, and

Zt =
∑4T

i=1
B(t; Ti)Q(t; Ti)× 2:5 million is de�ned as the change in the mark to market

value (in million) for each unit of change in the quoted spread.5

4. A Speci�cation Test of Structural Models

In this section we propose a speci�cation test of structural models under the GMM frame-

work of Hansen (1982). We �rst review the framework albeit using moment conditions

5 We use the ISDA CDS Standard model to mark a given CDS contract to market.
Documentation of the model as well as the source code for the model is available at
www.cdsmodel.com.

 Electronic copy available at: https://ssrn.com/abstract=968020 

http://www.cdsmodel.com/cdsmodel/


Speci�cation Analysis of Structural Credit Risk Models 11

pertinent to structure models. We then discuss �nite sample properties of GMM. Lastly,

we focus on the implementation of the proposed speci�cation test.

4.1 GMM Estimation of Structural Credit Risk Models

As mentioned before, the fundamental pricing relationship implied by a structural model

has implications for credit spreads, equity volatility, default probabilities, leverage, cor-

porate bond returns, corporate bond return volatility, hedge ratios, etc. To evaluate the

model, we �rst estimate the model parameters that may include asset volatility, default

barrier, asset jump intensity, or dynamic leverage coe�cients, etc. Let � denote the vector

of the model parameters to be estimated and �̂ the estimated vector. We then take �̂ as

given and examine the pricing performance of the (estimated) model. Below we describe

how to implement this idea using GMM, following largely Cochrane (2009).

As noted before, we focus on model-implied CDS spreads and equity volatility in the

empirical analysis. Let cds(t; t+ Tm) and �E(t) be the time-t CDS spread with matu-

rity t+ Tm and equity volatility under a given structural model, speci�ed in Eqs. (8)

and (9), respectively. Let c̃ds(t; t+ Tm) and �̃E(t) be the time-t observed counterparts of

cds(t; t+ Tm) and �E(t). Consider the following vector of pricing errors (so-called moment

conditions):

f(�; t) =


c̃ds(t; t+ T1)− cds(t; t+ T1)

· · · · · · · · · · · · · · · · · ·
c̃ds(t; t+ TM )− cds(t; t+ TM )

�̃E(t)− �E(t)

 ; (12)

where M denotes the number of CDS contracts with di�erent maturities included in f(�; t).

Under the null hypothesis that the model is correctly speci�ed, we have

E[f(�; t)] = 0: (13)

To test the above hypothesis, we construct a time series of f(�; t) over the sample period

and consider its time-series mean in the following:

g(�; T ) ≡ 1

T

T∑
t

f(�; t): (14)

In other words, g(�; T ) represents the sample mean of the moment conditions. If M =

dim(�)− 1 (i.e., the number of moment conditions is the same as the number of parameters
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to be estimated), then we can pick � such that g(�; T ) = 0. In general, however, M >

dim(�)− 1 as in our case; that is, there are more moment conditions than parameters. In

this case, we can pick � such that linear combinations of the moment conditions are zero.

This is a challenging task, however, especially given that both CDS spreads and equity

volatility are allowed to be observed with measurement errors in this analysis. As such,

we choose � to minimize a quadratic function of the pricing errors. Doing so leads to the

so-called GMM estimator:

�̂ = arg min g(�; T )′W (T )g(�; T ); (15)

where W (T ), a weighting matrix, denotes the asymptotic covariance matrix of g(�; T )

(Hansen, 1982). With mild regularity conditions, �̂ is
√
T -consistent and asymptotically

normally distributed, under the null hypothesis.

Furthermore, we implement the iterative GMM. That is, we begin with W (T ) = I, the

identity matrix, and estimate �. Next, we use a heteroscedasticity robust estimator for

the variance-covariance matrix W (T ) that allows for autocorrelation in the errors (Newey

and West, 1987), and obtain a new �̂. We repeat this procedure until it converges.

Given �̂
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examines the behavior of the two-step GMM estimator using one asset in the estimation.

He �nds that the bias of the estimator tends to increase as the degree of overidenti�cation

(Noi) increases but the empirical sizes of the JT test tend to be close to the asymptotic

value. Kocherlakota (1990) extends the analysis of Tauchen (1986) to multiple assets and

his �ndings suggest that the iterated GMM estimator considerably improves the �nite

sample behavior of GMM. Using predictive regression models for stock returns, Ferson

and Foerster (1994) �nd that while sizes of the two-step GMM based JT statistics are

often too large with �nite samples, the iterated GMM approach has superior �nite sample

properties. Hansen, Heaton, and Yaron (1996) consider a consumption-based asset pricing

model where the representative agent’s utility function allows for time non-separability.

They �nd that when the number of the overidentifying restrictions is high (�ve), the

asymptotic theory is far from the �nite sample property. Lettau and Ludvigson (2001)

argue that the one-stage GMM is more appropriate than the two-stage GMM with an

estimated weighting matrix in the application pursued in their study|where the time

series sample is small relative to the cross-sectional sample size.

In our speci�cation analysis, we test a given candidate model �rm by �rm. Based on

the insights from the aforementioned studies, in order to mitigate the potential small

sample problems in our tests, we need to keep the degree of overidenti�cation minimal. As

discussed in Section 4.3, for a given �rm, the number of parameters to be estimated using

the GMM ranges from one for the Merton model to four for the CDG model. As such, we

use four CDS contracts and realized equity volatility (i.e., �ve moment conditions) with 36

monthly observations in each GMM test. That is, the degree of overidenti�cation ranges

from one in CDG to four in Merton in our tests. As a robustness check, we also test the

Merton model using one CDS contract and realized equity volatility such that the degree

of overidenti�cation is one. The number of time series observations relative to the number

of moment conditions is reasonably large, given that the latter is no more than �ve in our

tests. Additionally, we implement the iterative GMM. Taken together, the �ndings of the

aforementioned studies based on the equity market suggest that small sample problems

are not a major concern in our GMM tests.
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4.3 Implementation

In this subsection we discuss the implementation of the proposed GMM speci�cation test.

First, to make the estimation tractable, we separately estimate the interest rate process

from �rm-speci�c model parameters for the two models with stochastic interest rates (the

LS and CDG models). This is a reasonable strategy, since the interest rate parameters

are common inputs in these models and those �rm-speci�c parameters do not a�ect the

interest rate process.

We use the 3-month LIBOR as a proxy for the short rate (rt) in the estimation. We

estimate the interest rate volatility using �̂r = VAR(rt). Given that the one-factor Vasicek

(1977) model is a crude approximation to the observed term structure dynamics, we opt

to estimate the risk-neutral drift parameters, � and �, month-by-month as follows:

{�̂t; �̂t} = arg min

T6∑
T=T1

[
ydata
t;t+T − yt;t+T (�; �)

]2
;

where the term structure of observed interest swap rates used in the above nonlinear least

square estimation is ydata
t;t+T with T = 1; 2; 3; 5; 7; and 10 years|matching CDS maturities

included in our sample (see Section 5.1). The cross-sectional pricing errors of the Vasicek

model range from 12 to 112 basis points (bps) during the full sample period. The sample

mean of monthly estimates (�̂t; �̂r;t), which are obtained by rolling-window estimations,

are 0.3820 and 0.0156, respectively; while �̂t is larger than those reported in previously

studies based on much longer samples (Schaefer and Strebulaev, 2008; Bao and Pan, 2013),

the magnitude of �̂r;t is consistent with their estimates.

Next, we focus on those �rm-speci�c model parameters. For ease of reference, let �

denote the vector of these parameters in the discussion that follows|namely, � does not

include (�; �; �r). For a given structural model, we estimate its parameter vector � in two

steps.

In step one, �xing an initial �, we calculate the month-t model-implied CDS spreads,

cds(t; ·) = {cds(t; t+ Tj)}Jj=1, and the model-implied equity volatility, �E(t), using Eqs. (8)

and (9), respectively.6 Given the model-implied cds(t; ·) and �E(t), we then compute the

6 In connection with Eq. (9), we implicitly include the empirically observed (quasi-market)
leverage ratio as one moment condition by imposing the following constraint during the
estimation: at the end of each month, for every �rm in our sample, we adjust the coupon
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month-t vector f(�; t) of pricing errors de�ned in Eq. (12). Repeating this for every month,

we obtain a time series of vector f(�; t) as well as its sample mean, g(�; T ) in Eq. (14),

over the full sample period.

In step two, we solve the optimization problem speci�ed in Eq. (15), where the weighting

matrix W (T ) is estimated iteratively|and in each iteration we use the Newey-West auto-

correlation robust estimator of the covariance matrix with three lags.

In the two-step procedure outlined above, one key component is the choice of the initial

�. In the case of the Merton model, � = (�v). The initial �v = �ELq, where the quasi

market leverage ratio Lq = F=(F +E), F denotes the total debt (book value), and E the

market equity value. In the case of the Black-Cox model, � = (�v;K). The initial �v is the

estimate of �v obtained using the Merton model. We set the initial K to 1.2 if �L < 0:2; 1 if

0:2 < �L ≤ 0:4; 0.8 if 0:4 < �L ≤ 0:6; 0.6 if 0:6 < �L ≤ 0:8; and 0.4 if �L > 0:8, where �L is the

�rm’s mean leverage ratio over the full sample period. Such choice of the initial (�v;K)

is also followed in the estimation of the LS, CDG, and DEJD models.

In the case of the two-factor LS model, we need to estimate (�v;K; �), where the initial

correlation coe�cient � used is the correlation between equity returns and the interest rate.

Estimates of � obtained in the literature, however, are usually zero or slightly negative

(see, e.g., Eom, Helwege, and Huang, 2004; Schaefer and Strebulaev, 2008; Bao and Pan,

2013). Therefore we restrict � to be zero in the estimation of the LS model. As a result,

� = (�v;K) in this case.

The other two-factor model, the CDG model, involves �ve parameters: (�v; �; �‘; �; �).

Results from an untabulated analysis indicate that coe�cients � and � seem di�cult to

be simultaneously identi�able and that � is not bounded between -1 and +1. As a result,

we impose the restriction that � = 0. Doing so also makes it easier to see the incremental

impact of the stationary leverage ratio relative to the LS model. It follows that the vector

of parameters to be estimated using GMM is � = (�v; �‘; �; �). The initial values of �‘; �; �

are chosen to be the same as the values used in CDG.

In the case of the DEJD model, the model parameters include (�v;K; �
Q; pQu ; �

Q
u ; �

Q
d ).

The latter three parameters, (pQu , �Qu , �Qd ), however, enter the solution function multi-

plicatively with �Q as in �Q�Q and, as a result, are very di�cult to identify in our GMM

rate of its debt such that it is valued at par and, as a result, that the market value of the
�rm is equal to (market equity + book debt).
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estimator. To overcome this technical di�culty in the GMM estimation of the DEJD

model, we let � = (�v;K; �
Q), and restrict the domain of (pQu , �Qu , �Qd ) to the following

particular values: pQu ∈ {0:25; 0:5; 0:75}, �Qu ∈ {3; 5}, and �Qd ∈ {3; 5}, where the inputs of

(�Qu ; �
Q
d ) are motivated by the calibration exercise of Huang and Huang (2002). In our es-

timation, for each �rm, we choose the particular set of jump parameters with the smallest

J -statistic as the \best" jump model estimate. The initial �Q is set to 0.1.

5. Data Description

Data used in our study include single-name credit default swap (CDS) spreads, data on

intraday equity returns (used to estimate realize equity volatility), �rm balance sheet

information, and risk-free interest rates. In this section we describe each of these four data

sets in detail, and then present summary statistics on CDS spreads and �rm characteristics.

5.1 Credit Default Swap Spreads

We use CDS data from Markit, a comprehensive data source that assembles a network of

industry-leading partners who contribute information across several thousand credits on

a daily basis. Based on the contributed quotes, Markit creates the daily composite quote

for each CDS contract, which must pass the stale data test, at curve test, and outlying

data test. Together with the pricing information, the Markit data set also reports average

recovery rates used by data contributors in pricing each CDS contract. In addition, an

average of Moody’s and S&P ratings is also included.

We begin with collecting all CDS quotes written on US entities (sovereign entities ex-

cluded) and denominated in US dollars. Following previous empirical studies on structural

models (e.g., Eom, Helwege, and Huang, 2004), we exclude �nancial and utility sectors

from the sample. In addition, we focus on the senior unsecured CDS contracts and elim-

inate the subordinated class of CDS contracts, because of their small relevance in the

database and unappealing implication in credit risk pricing. Furthermore, we limit our

sample to CDS contracts with modi�ed restructuring (MR) clauses, as they are the most

popularly traded in the US market.
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For the purpose of GMM estimation, we restrict the sample to those CDS names with

at least 36 consecutive monthly observed spreads to be included in the sample. Another

�lter used is that CDS data need to match equity price from CRSP, equity volatility from

NYSE Trade and Quote (TAQ) and accounting variables from Compustat. Application of

these �lters results in a �nal sample of 93 entities.

The Markit data set has single name CDS spreads available for maturities of 0.5, 1,

2, 3, 5, 7, 10, 15, 20, and 30 years. Due to the liquidity concern and missing values, we

focus on CDS spreads with maturities of 1 through 10 years. For each entity, we create

the monthly CDS spread by selecting the latest composite quote in each month, and,

similarly, the monthly recovery rates linked to CDS spreads. Our �nal sample includes 93

single names with monthly CDS spreads for maturities of 1, 2, 3, 5, 7, and 10 years over

the period January 2002{December 2004.

5.2 Equity Volatility from High Frequency Data

By the theory of quadratic variation, it is possible to construct increasingly accurate mea-

sure for the model-free realized volatility or average volatility, during a �xed time interval

(say, a day or a month), by summing increasingly �ner sampled squared high-frequency

returns (Andersen, Bollerslev, Diebold, and Labys, 2001; Barndor�-Nielsen and Shephard,

2002; Meddahi, 2002). In testing structural models, asset return volatility is often backed

out from (observed) equity return volatility (e.g., Jones, Mason, and Rosenfeld, 1984;

Eom, Helwege, and Huang, 2004), therefore a more accurate measure of equity volatility

from high-frequency data is critical in correctly estimating the asset return volatility|a

driving force behind the �rm default risk.

Let st ≡ logSt denote the day t logarithmic price of the �rm equity, and the intraday

returns are de�ned as follows:

rst;i ≡ st;i·∆ − st;(i−1)·∆; (17)

where rst;i refers to the ith within-day return on day t and � is the sampling frequency

and chosen to be 5-minute. The realized equity volatility (squared) for period t is given as

�̃E(t)2 ≡
1=∆∑
i=1

(rst;i)
2 (18)
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which converges to the integrated or average variance during period t. For a jump-di�usion

model, the continuous component of equity volatility (squared) can be estimated with the

so-called \bi-power variation"

�̃E(t)2 ≡ �

2

1=�

1=�− 1

1=∆∑
i=2

|rst;i−1||rst;i| : (19)

As shown by Barndor�-Nielsen and Shephard (2004), such an estimator of realized equity

volatility is robust to the presence of rare and large jumps. The data are provided by

the NYSE TAQ data base, which includes intraday (tick-by-tick) transaction data for

all securities listed on NYSE, AMEX, and NASDAQ. The monthly realized variance is

the sum of daily realized variances, constructed from the squares of log intraday 5-minute

returns. Then, monthly realized volatility is just the square-root of the annualized monthly

realized variance.

5.3 Capital Structure and Asset Payout

Assets and liabilities are key variables in evaluating structural models of credit risk. The

accounting information is obtained from Compustat on a quarterly basis and assigned to

each month with the quarter. We calculate the �rm asset as the sum of total liability plus

market equity, where the market equity is obtained from the monthly CRSP data on shares

outstanding and equity prices. Leverage ratio is estimated by the ratio of total liability to

the �rm asset. The asset payout ratio is estimated by the weighted average of the interest

expense and dividend payout. Both ratios are reported as annualized percentages.

5.4 Risk-Free Interest Rates

To proxy the risk-free interest rates used as the benchmark in the calculation of CDS

spreads, we use the 3-month LIBOR and the interest rate swaps with maturities of 1, 2,

3, 5, 7, and 10 years. These data are available from the Federal Reserve H.15 Release.

5.5 Summary Statistics

Table 1 provides summary statistics on �rm characteristics and CDS spreads across either

rating categories (panel A) or sectors (panel B). As can be seen from panel A1, our sample
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is concentrated in A-rated (25) and BBB �rms (45), which account for 75 percent of the

full sample, reecting the fact that contracts on investment-grade names dominate the

CDS market. In terms of the average over both the time-series and cross-section in our

sample, the 5-year CDS spread is 144 bps with a standard deviation of 3.18 percent, equity

volatility 38.40 percent (annualized), the leverage ratio 48.34 percent, asset payout ratio

2.14 percent, and the quoted recovery rate 40.30 percent. As expected, the CDS spread,

equity volatility, and the leverage ratio all increase as rating deteriorates. On the other

hand, the recovery rate largely decreases as rating deteriorates but has low variations.

Figure 1 plots both the term structure (from 1 year to 10 years) and time evolution

of the average CDS spreads over the full sample period January 2002{December 2004.

Clearly, the average spreads show large variations and have a peak around late 2002.

Figure 2 plots both the 5-year CDS spreads (top panel) and equity volatility (bottom

panel) by three di�erent rating groups (AAA{A, BBB, and BB{CCC) over the full sample

period. A casual inspection of the �gure indicates that CDS spreads and equity volatilities

appear to move together sometime during market turmoils but are only loosely related

during quiet periods. The 5-year CDS spreads clearly have a peak in late 2002 across all

three rating groups, although the high-yield group has another spike in late 2004. On the

other hand, equity volatility is much higher in 2002 than the later part of the sample

period and, in particular, has two huge spikes in 2002. There is clear evidence that equity

volatility and credit spreads are intimately related (Campbell and Taksler, 2003), and

the linkage appears to be nonlinear in nature (Zhang, Zhou, and Zhu, 2009). In the next

section we examine whether structural credit risk models can capture the dynamics of the

CDS spreads and equity volatility in our sample.

6. Empirical Results

In this section we present the results from our empirical analysis. We �rst report the

results from the GMM speci�cation test proposed in Section 4. We then discuss the GMM

estimates of the model parameters and the pricing performance of the �ve structural

models considered. Next, we provide some diagnostics on various model speci�cations
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based on the pricing errors. Lastly, we focus on the model implications for hedge ratios

and default probabilities.

6.1 GMM Speci�cation Test

Our GMM speci�cation test is based on the model implied pricing relationship for CDS

spread and equity volatility. Table 2 reports the test results, in particular, the number of

�rms where each of the �ve candidate models is not rejected, for the whole sample as well

as subsamples by either credit ratings (panel A) or sectors (panel B). Note from the table

that at the conservative 10% signi�cance level, the number of �rms (out of 93) where the

given model is not rejected is 0, 1, 2, 13, and 52 for the Merton, BC, LS, DEJD, and CDG

models, respectively. At the 1% signi�cance level, none of the �ve models have a rejection

rate of 100% and the number of �rms with the model not being rejected increases to 5,

6, 12, 42, and 72 for the Merton, BC, LS, DEJD, and CDG models, respectively. Judged

by these results on the number of �rms where each of the �ve models is not rejected, the

ranking of these models is as follows

Merton ≈ Black-Cox < LS� DEJD < CDG

Notably, the two more recent models|the DEJD and CDG models|outperform the other

three models. This �nding implies that both jumps and time varying leverage improve

noticeably the model performance.7 Although it is known that the Merton model under-

performs the richer models, the new evidence presented here against the model is based

on a consistent econometric test that takes into account the dynamic behavior of both

CDS spread curves and equity volatility.

Granted, GMM omnibus tests may be biased toward over-rejection of the true model

speci�cation. As a robustness check, we repeat the GMM test of the Merton model using

only one CDS contract (the 5-year one) and realized equity volatility. The results from

this test with the degree of overidenti�cation being one show that the number of �rms

with the Merton model not being rejected is still zero at the 10% signi�cance level but

7 Eom, Helwege, and Huang (2004) �nd that the CDG model marginally improves the
�tting of bond spreads over the LS model. One possible reason why we �nd that the
improvement over LS here is signi�cant is the use of CDS spreads in our tests. Another
possible reason is that the risk-neutral leverage parameters are estimated directly here
rather than indirectly through their counterparts under P, as alluded in Eom et al. (2004).
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increases to 20 at the 1% signi�cance level (untabulated). These results indicate that when

the degree of overidenti�cation decreases from four to one, the GMM test indeed rejects

the Merton model considerably less at the 1% signi�cance level. Nonetheless, the number

of �rms not rejecting the model (20) is still way below that for either the DEJD model

(42) or the CDG model (72).

As such, our �ndings provide new evidence on the relative performance of the �ve can-

didate models. Furthermore, given that even the highest-ranking model, the CDG model,

is rejected by 21 out of 93 �rms at the 1% signi�cance level, the results in Table 2 also

indicate that the �ve representative models considered here are still missing something.

6.2 Parameter Estimation

Although the GMM method provides a consistent test of the models, it does not necessar-

ily force the parameter estimates to be plausible in the estimation. Thus, it is important

to examine the model parameters and model implications for other moments or variables

using the estimated models. We focus on estimates of model parameters (�) in this sub-

section and investigate the latter aspect of the analysis in Sections 6.5 and 6.6.

Recall from Section 4.3 that vector � does not include those predetermined parameter

inputs in the case of the two-factor models and the DEJD model. Table 3 reports parameter

estimates �̂ and their standard errors across either credit ratings or sectors. Panel A

shows the results for the asset volatility parameter �v, which enters all �ve models. This

parameter is signi�cant at all conventional statistical levels. The level of the estimates

is reasonable in all models: the mean (median) asset volatility ranges from 0.154 (0.135)

for the Merton model to 0.199 (0.170) for the CDG model. The standard deviation of �̂v

ranges from 0.007 for the Merton model to 0.09 for the LS model.

Panel B of Table 3 reports the estimated default barrier scaled by the total debt, an

important parameter in the three models with a at default boundary. The estimated K=F

has a mean (median) of 1.18 (1.06), 1.16 (1.05), and 0.83 (0.75) for the BC, LS, and DEJD

models, respectively. This result is intuitive albeit not surprising. To see that, relative to

the BC model, the LS model needs a higher K in order to \mitigate" the negative impact

of a negative � (the correlation between the asset return and the interest rate) on the CDS
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spread. On the other hand, relative to the same benchmark, the DEJD model requires a

lower K given the positive impact of the jump risk on the CDS spread.

We also observe that the median K=F for investment-grade (IG) names is higher than

the median for high-yield (HY) names across all three models. In particular, in the LS

model while the median for IG names is greater than one, the median for HY names is

below one. Similar results obtain when we plot the estimated K=F the observed leverage

ratio F=Vt. As can be seen from Figure 3, the slope is signi�cantly negative, indicating

that a higher K=F is associated with a lower observed leverage (which is usually associated

with a higher credit rating). These results on a negative relationship between the default

boundary and the credit rating/observed leverage are also consistent with the evidence

documented in Eom, Helwege, and Huang (2004) based on the LS model with corporate

bond data.

Columns 3{5 in panel C of Table 3 report the estimates of the risk-neutral jump intensity

parameter (�Q) in the DEJD model. Note that the full-sample mean and median of �̂Q

are 0.181 and 0.126, respectively. Across di�erent rating categories, the median �̂Q levels

for HY names are much higher than those for investment-grade names. For instance, the

median is 0.123 for BBB names and 0.209 for BB names. This variation in �̂Q across

di�erent rating groups partly explains the negative relation between the estimated default

boundary and the credit rating discussed earlier (panel B of the table).

The remaining columns in panel C of Table 3 show the estimates of the three leverage

parameters in the CDG model, �‘ (columns 6-8), � (columns 9{11), and � (columns 12{14).

Recall that �‘ is the mean-reverting speed of the risk-neutral log leverage ratio log(Kt=Vt).

The full-sample mean and median of �̂‘ are around 15.16 and 15.35, respectively. In the

IG subsample, the median ranges from 15.04 for the single AAA-rated name to 17.72 for

the AA-rated names; in the HY subsample, the median is -0.021 for the single CCC-rated

name, 1.41 for the BB-rated names, and 5.19 for the B-rated names. These results mean

that the median �̂‘ is much larger than the calibrated value of 0.18 adopted by CDG or

the regression-based estimate obtained in Frank and Goyal (2003), regardless of the rating

categories except for the CCC rating group. This �nding may be an indication that the

CDG model is missing something; it also illustrates the importance of post-estimation

examination of the parameter estimates.
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Parameter � is related to �‘, the long-run mean of the risk-neutral leverage ratio, given

that �‘ = �t−rt+�2
v=2

�‘
+ �(rt − �)− �. Our choice of estimating a constant � implies a time-

varying but deterministic �‘. The median of �̂ ranges from 0.11 for the lone AAA name to

1.57 for the only CCC-rated name. The full sample mean and median are 0.22 and 0.16,

respectively, both of which are closer to the calibration value of 0.60 used in CDG.

Parameter � measures the sensitivity of the �rm-speci�c leverage ratio dynamics to the

risk-free interest rate, similar to the risk factor loading in standard asset pricing models.

The full sample mean and median are 2.83 and 1.88, respectively. Across di�erent rating

groups, the median lies in between 1.18 and 3.15 except for the single CCC-rated name

whose �̂ is about 37.42. There is substantial variation in �̂ within each rating group except

for the single AAA- and CCC-rated names. For instance, in the BB-rated group, the 5th-

and 95th-percentiles are about -12.19 and 11.76, respectively. The above results suggest

that �rms have very di�erent leverage ratio dynamics as the macroeconomic risk changes

over time. Such a heterogeneity of dynamics leverage ratio seems to be the key for the

CDG model to pass the GMM speci�cation test with more than half of the sample.

6.3 Pricing Performance Evaluation

As the evaluation of structural models is usually based on comparing their pricing errors on

corporate bonds in the literature, we examine the pricing errors of candidate models (after

the parameters are consistently estimated and model speci�cation tests are conducted) in

this subsection.

To be more speci�c, given a candidate model and its estimated model parameters, in

each month we calculate the model implied equity volatility and CDS spreads for each

maturity including 2 and 7 years. Note that while 2- and 7-year contracts are too sparse to

be included in estimation, they are still useful to be included in pricing error evaluation.

Then we compute the simple di�erence, absolute di�erence, and percentage di�erence

between the model implied and observed ones, for every name in the sample. Next, we

calculate the mean of the pooled pricing errors.

Table 4 reports the pricing errors on CDS spreads for the full sample as well as by

each rating group and sector. In terms of pricing errors on the spread level (panel A), the

overall average pricing error is negative except for the Merton model. This is to say that
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on average, the Merton model overestimate the CDS spread while the other four models

underestimate the spreads.8 Speci�cally, the average pricing error is -0.18% for CDG, -

0.44% for DEJD, -0.71% for LS, and -0.91% for BC. Thus, the CDG and DEJD model

under-�t the spread less than do the BC and LS models.

Note that the overall positive pricing error of the Merton model is mainly driven by

the four B-rated names and single CCC-rated name (Delta Air Lines) in the sample. To

see that, recall �rst from Table A1 that these �ve names all have high leverage and high

equity volatility. Delta Air has an equity volatility of 81.9% and a leverage of 93.9%; the

average equity volatility and leverage on the four B-rated names are 83.2% and 72.6%,

respectively. It is known that the Merton-implied short-term spread on such �rms can be

very high (Merton, 1974). This result also holds for the �ve B and CCC names in our

sample (see panel C of Figure 4). As a result, the Merton pricing error on these names is

large as reported in panel A of Table 4. Next, note from panel A that the average pricing

error for IG names is negative, regardless of the structural models considered; that is, on

average, all �ve candidate models underestimate the CDS spread on IG names, consistent

with the �ndings of Bao (2009) using the BC and DEJD models as well as those of Eom,

Helwege, and Huang (2004) and Huang and Huang (2012) based on IG bonds.

In terms of absolute pricing performance (panel B), the BC and LS models outperform

the Merton model but underperform the DEJD and CDG models in both the full sample

and each of the seven credit-rating groups (except for the single CCC-rated name where the

BC model slightly outperforms CDG). Furthermore, between the two more recent models,

the DEJD model performs relatively better for the IG names while the CDG model does

better for the HY names (except for the single CCC-rated name). These results contrast

the �ndings of Eom, Helwege, and Huang (2004) based on corporate bond data that richer

model speci�cations do not improve upon the Merton model in terms of pricing errors.

Results on percentage pricing errors, reported in panel C, indicate that on average, the

CDG model overestimates the CDS spread while the other four models underestimate the

spread. Among the IG names, the Merton, BS, LS, and DEJD models all underestimate

the spread substantially in each of the four rating categories, except that the DEJD model

8 Predescu (2005) also observes that combining equity price and CDS spreads would make
the Merton model over�t the spread.
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overestimates the single AAA name’s spread. On the other hand, the CDG model over-

estimates the spread for three IG-rated subgroups. These results indicate that although

the newer models (DEJD and CDG) do improve upon the older ones (Merton, BC and

LS), the CDG model can raise the spread too much for names in certain rating groups in

terms of the percentage pricing errors.

Panel D reports the results on absolute percentage pricing errors. The ranking of the

�ve models is largely the same as before: the DEJD and CDG models outperform the BC

and LS models, both of which outperform the Merton model. Nonetheless, the accuracy of

all �ve models is still a problem: the average absolute percentage pricing error ranges from

45.6% for the DEJD model to 114.3% for the Merton model. This �nding echos a similar

one in the corporate bond market documented in Eom, Helwege, and Huang (2004).

Table 5 presents the results on �tting errors of equity volatility. Broadly speaking, they

display similar patterns to those on the CDS spreads (Table 4). For instance, consider

panel A. Note that for each model the overall sign of �tting errors on equity volatility is

consistent with those on CDS spreads, though the magnitude of volatility �tting errors

is generally larger. To some extent, this result is not surprising given that credit spreads

increase with the asset volatility in the candidate models. Note also that the Merton

�tting error is positive overall mainly because of over�tting in the four B-rated and one

CCC-rated bonds. In fact, the model under-�ts equity volatility of AA and A names

substantially. The other four models also under-�t equity volatility of IG names, except

for the single AAA-rated name in the case of the BC, LS and DEJD models and for the

AA-rated names in the case of the BC model.

In terms of absolute �tting performance (panel B), on average, the DEJD and CDG

models have the lowest errors (11.61% and 11.87%, respectively), while the Merton model

has the highest one (26.11%). The BC model slightly underperforms CDG but outperforms

LS substantially. Between the two more recent models, on average, the DEJD model

underperforms CDG in IG names but outperforms CDG in HY names.

In terms of percentage �tting errors on equity volatility (panel C), the overall sign is

consistent with those on CDS spreads for the BC, DEJD and CDG models. This is not

the case, however, for the Merton and LS models, which both have an overall positive

volatility �tting error. Additionally, note that the magnitude of overall percentage �tting
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errors on equity volatility is much lower than its counterpart on spreads, because the level

of equity volatility is typically higher than the CDS spread.

The ranking of the �ve models based on the overall absolute percentage �tting error on

equity volatility (panel D) is the same as that based on the overall absolute �tting error

on equity volatility (panel B) except that the BC and CDG models switch their places. In

addition, for each of the seven di�erent rating groups, the DEJD model outperforms the

CDG model except for the single AAA-rated name.

To summarize, the results of this section provide evidence that the two more recent

models (the DEJD and CDG models) outperform the three older ones (the Merton, BC,

and LS models) in �tting CDS spreads as well as equity volatility. Nonetheless, we �nd

that on average, the �ve structural models all underestimate CDS spreads as well as equity

volatility for IG names. In addition, the accuracy of all �ve models in �tting either the

CDS spread or equity volatility is low.

6.4 Further Diagnostics on Model Speci�cations

In this subsection, we try to gain further insights on model speci�cation errors, by ex-

amining the model-implied term structure and time series of CDS spreads, along with

the model-implied equity volatility. We also discuss some implications of this analysis for

improving the standard structural models.

Figure 4 plots the sample average of the CDS term structure from 1 year to 10 years

from the observed data (in solid blue) as well as each of the �ve candidate models, for three

di�erent credit-rating groups, AAA-A (top panel), BBB (middle) and BB-CCC (bottom).

A few observations are worth mentioning here: (1) all �ve models under�t the average

term structure except for the Merton model that over�ts the short end for the BBB and

BB-CCC groups; (2) the best-�tting model, CDG, �ts the BBB average term structure

almost perfectly and under�ts slightly for the AAA-A group; (3) the DEJD model is the

second best; (4) the BC model largely captures the shape of the average term structure but

under�ts its level considerably; (5) the LS model slightly underperforms the BC model in

the short maturity for IG names but outperforms the model for HY names; (6) the Merton

model under�ts the AAA-A curve substantially, especially in the long end but under�ts

the long end of the BBB and BB-CCC curves less than the BC and LS models do.
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Overall, both the stationary leverage and the jump-di�usion models match the shape of

the average term structure of CDS spreads well, especially for IG names. The two models,

however, still under�t the level of the curve, but the stationary leverage model implied

curve is much closer to the observed one than the one implied by the jump-di�usion model.

Figure 5 plots the observed 5-year CDS spread against the �ve model implied ones.

For the HY names (the BB-CCC group), all models seem to capture the time-variations

of the 5-year CDS spread reasonably well, although the DEJD and CDG models seem to

be the best two. Furthermore, while the DEJD model outperforms the CDG mode in the

�rst third of the sample period, the latter outperforms the former in the last third of the

sample period. For the IG names (the AAA-A and BBB groups), most models completely

miss the dynamics of the CDS spread, especially for the �rst third of the sample, when the

risk-free rate remains as low as 1%. Interestingly, even the best-�tting CDG model that

can get the average level right is not able to describe the evolution of the CDS spread. This

�nding suggests that a time-varying factor in addition to the interest rate and leverage

ratio|like stochastic asset volatility|may be needed in order for a structural model to

fully capture the temporal changes in CDS spreads for IG names.

Figure 6 reports the average model-implied and �tted equity volatilities over the full

sample period, for three di�erent credit-rating groups, AAA-A (top panel), BBB (middle)

and BB-CCC (bottom). Note that for both IG groups, all �ve models miss completely

the volatility spikes during the early sample period. Moreover, every model generates a

nearly constant equity volatility while the observed equity volatility varies substantially

over time. For the HY group, the model performance is relatively better. In particular, the

Merton model captures the volatility spikes to some degree and the LS and DEJD models

reasonably �t the second half of the volatility time series. However, these results are mainly

driven by the unrealistically high model-implied volatility for the single CCC-rated name.

Overall, Figure 6 provides evidence suggesting that without time varying asset volatility,

the structural models have di�culty replicating the observed equity volatility dynamics,

especially for IG names.

Figure 7 plots the initial spot log leverage ratio log(Kt=Vt) and the long-run mean of

risk-neutral log leverage ratio implied from the CDG model, for three di�erent credit-rating

groups, AAA-A (top panel), BBB (middle) and BB-CCC (bottom). It is clear from the
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�gure that these two leverages are fairly close to each other for the HY group (the CCC-

BB names). On the other hand, for the BBB names the observed leverage is signi�cantly

lower than its risk-neutral counterpart, and the di�erence between the risk-neutral and

observed leverages is even more dramatic for the AAA-A names. This �nding mirrors the

stylized fact that highly pro�table �rms may opt to borrow little or no debt (Strebulaev

and Yang, 2013; Chen and Zhao, 2006). Such a puzzle may be worth further investigation.

In summary, dynamic leverage ratios and, to a lesser degree, jumps seem to be crucial

for a structural model to better match the CDS spread and equity volatility than those

models without such two features. However, something else is still missing in the candidate

models as they all fail to adequately capture the dynamic behavior of CDS spreads and

equity volatility, especially for the IG names. Our �ndings suggest that incorporating a

stochastic asset volatility may improve the performance of the existing structural models.

6.5 Model-Implied Equity Sensitivity of CDS Spreads

The implications of the estimated structural models go beyond CDS spreads and equity

volatilities, the variables included as moment conditions and examined in Sections 6.3 and

6.4. In this subsection, we focus on one �rm speci�c variable not included in the moment

conditions, the sensitivity of CDS spreads to equity return discussed in Section 3.3.

6.5.1 Regression Tests of Model-implied Sensitivities

We �rst test the accuracy of model-implied sensitivities in a linear regression setting.

Consider the following regression model:

�c̃ds(t; t+ 5)i = �i + �1;i�r
10y
f;t + �2;i�

cds
E;i;trx

E
i;t + uit; (20)

where �c̃ds(t; t+ 5)i denotes the monthly change in the observed 5-year CDS spread for

�rm i; r10y
f;t the month-t ten-year zero yield extracted from swap rates, included to control

for changes in the \risk-free" term structure; rxEi;t �rm-i’s monthly equity return minus

the one-month LIBOR; and �cds
E;i;t is the model-implied sensitivity of the CDS spread to

equity return for �rm i as speci�ed in Eq. (10),9 and is calculated using the parameter

9 In the implementation of Eq. (10), @cds(t; t+ 5)i=@Vi;t is calculated using Eq. (8), and
@Ei;t=@Vi;t is set to one minus the delta of a 5-year par bond (see footnote 6), an approx-
imation except for the Merton model. In an untabulated analysis based on the BC model,
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vector �̂ estimated with the full sample (see Section 6.2)|for example, �̂ = (�̂v) for the

Merton model (Section 4.3). If the model accurately describes the equity sensitivity of

CDS spreads, the slope coe�cient �2;i should be equal to one. On the other hand, if the

model consistently underpredicts the sensitivity, then �2;i is expected to be signi�cantly

greater than one.

As such, we can test the null hypothesis (H1) that �2;i = 1 on a �rm-by-�rm basis and

report the number of �rms for which H1 is not rejected in our sample.10 In the analysis

that follows, we conduct the test based on a modi�ed Eq. (20) with a smoothed �cds
E;i;t:

�c̃ds(t; t+ 5)i = �i + �1;i�r
10y
f;t + �2;i�

cds

E;i;t rx
E
i;t + uit; (21)

where �
cds

E;i;t denotes the month-t average of model-implied sensitivities across �rms in the

same rating or industry category as �rm i. This is because using a smoothed model-implied

hedge ratio can help reduce the noise in the �rm-by-�rm estimates of model parameters

(see, e.g., Schaefer and Strebulaev, 2008).

Table 6 reports the results from regression in Eq. (21) where �
cds

E;i;t used is either by

ratings (panel A) or by industries (panel B). Consider panel A �rst. Note that ��2;i, the

average of the estimates of �2;i over the whole sample, is 0.74 and 0.76 for the BC and

LS models, respectively, but ��2;i is around one for the other three models. An inspection

of the means of �̂2;i in each rating category �nds that the means are below one regardless

of the rating categories for both the BC and LS models. This result indicates that these

two models consistently overpredict the equity sensitivity of CDS spreads. On the other

hand, for the Merton and DEJD models, the average �̂2;i is below or very close to one for

IG names but is greater than one for HY names|and, in fact, the pair of the coe�cients

we �nd that including the expected bankruptcy cost in @Ei;t=@Vi;t has little impact on
the model’s performance in �tting both CDS spreads and equity volatility as well as in
hedging CDS.
10 This regression test is in the spirit of Schaefer and Strebulaev (2008), who examine
the Merton-implied sensitivity of corporate bond returns to equity. The authors focus on
the average of regression coe�cients (counterparts of �2;i estimates here) across bonds
in their sample and test whether the mean slope coe�cient is close to one. Notably,
they �nd an imprecise estimate of the mean �2;i in their AAA rating category, which
consists of 23 bonds. Given that there are only 93 observations of the estimated �2;i in our
entire sample, there are not enough �rms available in certain rating/sector categories for
a reliable inference based on the mean of the 93 estimates. This mean estimate is reported
in Table 6.
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for B and CCC names are (2.90, 3.90) and (2.52, 3.49) for the Merton and DEJD models,

respectively. The variation in the average �2;i across di�erent rating categories is much

less for the CDG model, with the average �2;i ranging from 0.73 for AA names to 1.25 for

AAA- or B-rated names.

For how many �rms out of 93 the null hypothesis H1 is not rejected (for a given model),

based on the t-statistics (using the Newey-West standard error estimator)? As indicated

in panel A, the answer is 72 (Merton), 12 (BC), 18 (LS), 69 (DEJD), and 76 (CDG), at the

5% signi�cance level. Recall from Table 2 that the number of �rms where the model is not

rejected by the GMM-based speci�cation test at the 5% signi�cance level is 1 (Merton), 1

(BC), 6 (LS), 20 (DEJD), and 63 (CDG). The implication is that all �ve models capture

the sensitivity of CDS spreads to equity much better than they do the CDS spread level

and equity volatility. This is true especially for the Merton model.

Regression R2, shown in the last row of panel A, is 30.4% for Merton, 26.3% for BC,

28.6% for LS, 30.2% for DEJD, and 18.7% for CDG. Note that the R2 generated by

the CDG model is low, and even lower than its counterpart from the otherwise same

regression excluding �
cds

E;i;t (untabulated). Furthermore, the R2 under CDG is the lowest

among the �ve models. How to reconcile this result with the evidence that the number

of �rms where H1 is not rejected is the highest under CDG? One explanation is that

the t-test conducted at the �rm level may fail to reject the null hypothesis even if the

point estimate of the slope coe�cient substantially deviates from unity, due to the large

standard error estimated using the Newey-West adjustment. Therefore, although among

the �ve candidate models the CDG model has the largest number of non-rejected �rms,

the model does not necessarily make the most accurate prediction of hedge ratios.

The results reported in panel B of Table 6 are largely similar to those in panel A. For

example, the means of estimated �2;i in every sector are 0.70 for the BC model and below

0.76 for LS. On the other hand, the means are much closer to one for the other three models.

Furthermore, the Merton-based mean estimate is the largest among the �ve model-based

mean estimates for three sectors (out of seven), including 1.33 for \communication," 0.92

for \materials," and 1.43 for \technology," and the second largest for the remaining four

sectors. In terms of the regression R2, it is 28.1% for Merton, 11.9% for BC, 13.2% for LS,
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30.0% for DEJD, and 18.6% for CDG. Note that although the R2 under CDG is not the

lowest here, it is still much lower than the R2 value under either Merton or DEJD.

To summarize, while the results of the test of Hypothesis H1 favor the Merton, DEJD,

and CDG models (in ascending order), the �rst two rank notably higher than CDG based

on the regression R2. As a low R2 value suggests that the underlying model is unable to

e�ectively replicate the variation in CDS contract values, the actual hedging performance

of the same model may also be a�ected negatively. As such, the Merton and DEJD models

may provide better hedging performance than does the CDG model. Furthermore, given

that the Merton implied sensitivity is more reasonable than the DEJD implied one (e.g.,

for B and CCC names), the Merton model may provide better hedging performance than

the DEJD model. In the subsection that follows we investigate which of the �ve candidate

models delivers the most robust hedging performance.

6.5.2 Evidence on Hedging E�ectiveness

Suppose that in month t, an investor hedges a single-name CDS with the underlying equity

and makes no additional trades until the end of t+ 1.11 At t+ 1, the position is closed

out and the hedging error over the one-month period is computed as

�t = V cdst+1 − hcdsE;t rEt+1;

where the hedge ratio hcdsE;t is as de�ned in Eq. (11), and we make use of the fact that a

CDS contract is worth close to zero when it is �rst initiated (V cdst = 0).

Assume that the investor’s objective is to minimize the monthly volatility of the hedged

single-name CDS. Following Bertsimas, Kogan, and Lo (2000), we use root-mean-squared

hedging error (RMSE) as the summary statistic for hedging errors over our sample period.

The RMSE is equal to the standard deviation when the mean hedging error is zero. For

comparison, we also compute the RMSE of the short CDS position when the CDS contract

11 In an untabulated analysis, we also examined the performance of hedging CDS portfolio
positions, with the portfolios formed based on the rating/sector category. These results
are not reported as the relative performance among structural models does not change; as
expected, the absolute hedging e�ectiveness increases because the hedging loss from one
single name in the portfolio may be o�set by the hedging gain from another.
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is not hedged (hcdsE;t = 0), denoted RMSEU . One measure of hedging e�ectiveness of model

M calculates the reduction in the RMSE as a result of hedging as the following:

HEff = 1− RMSEM

RMSEU
:

Note that if hedge ratios implied from a particular model substantially increase volatility

relative to the unhedged position, then HEff is negative.

Panel A of Table 7 presents the results on the hedging performance of �rm-speci�c

hedge ratios (i.e., hedge ratios not smoothed over a given rating group or a given sector)

under the �ve structural models. Surprisingly, among these models the Merton HEff is

the highest (7.0%), indicating that the Merton-implied hedge ratio achieves the largest

reduction in the RMSE. The CDG model also has a signi�cantly positive overall HEff

(3.5%). In contrast, the overall HEff is highly negative for both the BC and LS models,

implying that the hedged position|using hedge ratios derived from the two models|is

much more volatile than the unhedged position. The overall negative HEff for the DEJD

model has a great deal to do with the BB-rated names.

Consider next the hedging performance of the Merton and CDG models by credit ratings

or sectors. Note that the Merton HEff is signi�cantly positive for BB and B names only

and that the CDG HEff is signi�cantly positive for BB names only. On the other hand,

out of the seven di�erent sectors, the Merton HEff is signi�cantly positive for six of them

and the CDG HEff for two. These results together indicate that the Merton hedge ratio is

more e�ective by sectors than by credit ratings.

Why is the overall HEff so negative for the BC and LS models? One possible reason is

that the use of unsmoothed hedge ratios leads to dramatic increases in volatility. Indeed,

we observe from Table 6 that for those rating or sector groups with a larger number of

�rms, the (rating- or sector-speci�c) average hedge ratios tend to be more aligned with

their empirical counterparts. This result suggests that smoothing within a credit rating

or industry group could lower the impact of uncertainty in the �rm-by-�rm estimation, as

advocated by Schaefer and Strebulaev (2008). As such, using smoothed hedge ratios (i.e.,

either rating- or sector-speci�c (average) hedge ratios) should help mitigate this so-called

\hedging crash risk."
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Panel B of 7 reports the results on hedging performance of rating-speci�c hedge ratios.

A comparison with panel A of the table indicates that the overall HEff in panel B is

much less negative for the BC, LS, and DEJD models and, in fact, becomes statistically

insigni�cant for the latter two models.12 Although CDG’s overall HEff also increases from

3.5% to 5.8%, it is not signi�cantly di�erent from zero. On the other hand, the Merton

overall HEff increases from 7.0% to 9.9% and remains highly signi�cant.

The hedging performance in individual rating groups also improves. For instance, the

Merton HEff is now signi�cantly positive for �ve out of seven groups (only two out of seven

in panel A). For the BC model, its HEff for the BBB group, for example, increases from

-90.3 (highly signi�cant) in panel A to -1.82 (no longer signi�cant) in panel B. For the LS

model, its HEff for the BBB group also increases from a highly signi�cant -113.3 in panel

A to an insigni�cant -2.06 in panel B.

Results on hedging performance of sector-speci�c average hedge ratios, reported in

panel C of Table 7, provide similar evidence as those in panel B do. Consider the overall

HEff �rst. Note that again, HEff is much less negative for the BC, LS, and DEJD models

than its counterparts in panel A, although it is still signi�cant for the BC and DEJD

models.13 The CDG HEff is more positive and still signi�cantly di�erent from zero. The

Merton HEff also increases slightly and remains highly signi�cant. Overall, judging from

the whole sample, averaging hedge ratios by ratings is more e�ective than averaging by

industry in improving the hedging performance.

Next, consider HEff for individual sectors. For example, the LS HEff for \industrial"

increases from -103.6 in panel A to -7.48 (albeit still signi�cant) in panel B. The CDG

HEff is now signi�cantly positive for �ve sectors, as opposed to two sectors in panel A.

In summary, the results based on both the full sample and rating- or sector-speci�c

subsamples in Table 7 provide strong evidence that using smoothed hedge ratios helps

12 Why is the BC overall HEff still large and negative with smoothed hedge ratios? The
reason is that the BC model-implied hedge ratios are striking for certain �rms in the
sample. In an untabulated analysis we �nd that these �rms have an estimated default
boundary K=F ranging from 1.26 to 1.54. When the asset value is close to this arti�cial
boundary, the equity value becomes insensitive to the asset value. A low @Et=@At inates
the model-implied equity sensitivity of the CDS spread.
13 The overall negative HEff for the DEJD model is mainly caused by a BB-rated tech-
nology �rm. When this �rm is excluded from the sample, the hedging performance of the
DEJD model is generally comparable to that of the CDG model (untabulated).

 Electronic copy available at: https://ssrn.com/abstract=968020 



34 Jing-Zhi Huang et al.

improve the hedging performance. Furthermore, based on the hedging performance, the

top three ranked models are the Merton, CDG and DEJD models.

We should note that while the analysis of hedging e�ectiveness presented here corre-

sponds to an out-of-sample test of hedge ratios, the estimates of model parameters make

use of the full sample. In an untabulated analysis, we examine the hedging performance

for two- and seven-year CDS contracts (which are not included in the GMM estimation)

and �nd that the results are consistent with those using the �ve-year CDS. In particular,

the ranking of the �ve models based on the their hedging performance remains the same.

That is, our �ndings are robust to the aforementioned look-ahead bias.

6.6 Model-Implied Default Probabilities

The discussion so far has focused on the implications of structural models for variables

under the risk-neutral measure. In this subsection, we examine model-implied P-measure

default probabilities. For comparison, we also include model-implied default probabilities

under the (risk-neutral) Q-measure.

As an important determinant of CDS spreads, risk-neutral default probabilities are

straightforward to calculate using an estimated model. In order to calculate real default

probabilities, we need to specify the dynamics of the underlying variables under the P-

measure and then estimate those P-measure parameters. The GMM-based estimation of

such parameters, however, requires that P-measure moment conditions be speci�ed. We do

not pursue this approach in this analysis. Instead, we calibrate the P-measure parameters

in the analysis that follows when it is necessary.

As a result, for illustration we focus on the Black and Cox (1976) model|the simplest

one among the three candidate models with a at barrier|in the analysis that follows.

Given the speci�cation of the BC model under Q, its speci�cation under P involves only

one extra parameter, the asset risk premium �v ≡ �v − r, where �v is the expected asset

growth rate. We calibrate �v using the formula, �v − r = �v × SRv, where SRv denotes

the asset Sharpe ratio (equal to the equity Sharpe ratio under the model). To this end,

we set SRv to 0.23, the equity Sharpe ratio of a median �rm according to Chen, Collin-

Dufresne, and Goldstein (2008), and then use �rm-speci�c asset volatilities estimated

earlier in Section 6.2 to calibrate �rm-speci�c asset risk premiums.
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Figure 8 plots the time series and term structure of the BC model-implied default

probabilities under either the Q measure (panel A) or the P measure (panel B) over the

full sample period. A comparison of panel A and Figure 1 indicates that the BC model

fails to capture the surface of CDS spreads, given that the model assumes a constant

recovery rate. As expected, the default probabilities under Q are markedly higher than

their counterparts under P. Nonetheless, both panels show a spike in late 2002, consistent

with Figure 1.

We can also compare the average model-implied real default probability with the av-

erage (historical) default rate for a given rating group. For the latter, we use the average

issuer-weighted cumulative default rates by rating categories over 1920{2004 calculated

by Moody’s. Figure 9 plots the term structures of average default rates (solid line), the

BC model-implied default probabilities under the Q measure (blue dashed line) as well

as the P measure (red dotted line), for three di�erent rating groups, single A (panel A),

BBB (panel B), and BB (panel C). The AAA-A group is not considered here because,

�rst, we do not have Moody’s average default rates for the AAA-A group and secondly,

the AAA-A group in our sample is dominated by the single A �rms. Panel C includes only

the BB names instead of the CCC-BB group for the similar reason.

We make two observations from Figure 9. First, the BC model �ts the Moody’s average

default rates well for A-rated names. The implication of this result is that the evidence

based on single A �rms in our sample is consistent with the notion of the credit spread

puzzle: the model matches the average default rates but it underpredicts the CDS spreads.

Second, the model under�ts the average default rates for both BBB and BB names, espe-

cially at long horizons. To some extent, this result is not surprising given that on average,

the model noticeably underestimates the CDS spreads for BBB and BB names over the

full sample. For the model to match the historical averages the period 1920{2004, we need

higher asset volatility, default boundary, or both (than the estimates reported in Table 3).

Such parameter values also allow the model to �t the observed CDS spreads for BBB and

BB names better, largely consistent with the credit spread puzzle.
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7. Conclusions

Empirical studies of structural credit risk models are usually carried out using calibra-

tion, rolling window estimation, or regression analysis. This paper proposes a GMM-based

speci�cation test of these models. This alternative method allows us to directly estimate

structural models, as well as test whether all the restrictions of the model are satis�ed,

among other things.

For illustration, we apply the proposed speci�cation test to �ve representative structural

models using data on the term structure of CDS spreads and realized equity volatility

(estimated with high frequency intraday data). We conduct the test using a sample of

industrial �rms over a post dot-com bubble and pre-�nancial crisis period that nonetheless

includes some relatively high credit risk episodes. The test results show that the Merton

(1974) model and the two di�usion-based constant-barrier models are all strongly rejected

by the proposed speci�cation test. However, the results also indicate that incorporating

jumps or stationary leverage into a barrier model improves the overall �t of CDS spreads

and equity volatility. Nonetheless, all �ve models have di�culty capturing the dynamic

behavior of both equity volatility and CDS spread curves, especially for investment-grade

names. On the other hand, our results demonstrate that these models have a much better

ability to explain the average sensitivity of CDS spreads to equity return than their ability

to explain the average CDS spread and equity volatility. Surprisingly, we also �nd that

the Merton (1974) model provides the best hedging performance among all �ve models.

Overall, the main �ndings of this study, together with those of Bao and Pan (2013) on

excess corporate bond return volatility, suggest a need for new structural models that can

explain not only the credit spread puzzle but also the second moment variables. Another

line of inquiry worth pursuing is to conduct a more rigorous and comprehensive analysis

of �nite sample properties of the GMM test proposed in this study.
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Table 1: Summary Statistics on CDS Spreads and the Underlying
Names

This table reports summary statistics on the 93 �rms, by ratings (Panel A) and sectors (Panel
B), that underlie the credit default swap (CDS) contracts in the entire sample. Rating is the
average of Moody’s and Standard & Poor’s ratings. Equity volatility is estimated using 5-minute
intraday returns. Leverage ratio is the total liability divided by the total asset which is equal to
total liability plus market equity. Asset payout ratio is the weighted average of dividend payout
and interest expense over the total asset. Recovery rate is the quoted recovery rate accompanied
with the CDS premium from the dealer-market. CDS spreads have 1-, 2-, 3-, 5-, 7-, and 10-year
maturities over the period from January 2002 to December 2004.

Panel A1: Firm Characteristics by Credit Ratings

Credit rating
Sample �rms Equity Leverage Asset Recovery

number percentage volatility (%) ratio (%) payout (%) rate (%)

AAA 1 1.08 36.36 63.71 2.22 40.88
AA 6 6.45 31.50 20.92 1.53 40.92

A 25 26.88 32.51 38.15 2.02 40.57
BBB 45 48.39 35.54 51.84 2.26 40.73

BB 11 11.83 47.19 57.76 2.15 39.51
B 4 4.30 83.23 72.61 2.28 38.23

CCC 1 1.08 81.94 93.93 2.89 26.57

Overall 93 100.00 38.40 48.34 2.14 40.30

Panel A2: Average CDS Spreads (%) by CDS Maturities and Ratings

Maturity of CDS

1-year 2-year 3-year 5-year 7-year 10-year

AAA 0.23 0.28 0.32 0.43 0.45 0.49
AA 0.12 0.13 0.15 0.20 0.23 0.28

A 0.25 0.29 0.32 0.39 0.43 0.49
BBB 0.74 0.79 0.86 0.94 0.98 1.05

BB 2.62 2.74 2.84 2.90 2.92 2.92
B 7.52 7.20 7.51 7.25 7.01 6.79

CCC 25.26 22.99 20.91 18.81 18.03 17.31

Overall 1.34 1.36 1.40 1.44 1.45 1.49

Panel A3: Std. Dev. of CDS Spreads (%) by CDS Maturities and Ratings

AAA 0.17 0.19 0.21 0.25 0.23 0.24
AA 0.07 0.07 0.07 0.09 0.09 0.10

A 0.23 0.27 0.24 0.25 0.24 0.26
BBB 0.96 0.96 0.96 0.91 0.89 0.84

BB 2.72 2.75 2.59 2.35 2.28 2.14
B 8.67 6.19 7.61 6.12 5.90 5.25

CCC 24.96 19.40 16.48 13.65 12.68 11.81

Overall 4.43 3.78 3.62 3.18 3.04 2.85
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Table 1 (continued)

Panel B1: Firm Characteristics by Sectors

Sector
Sample �rms Equity Leverage Asset Recovery

number percentage volatility (%) ratio (%) payout (%) rate (%)

Communications 6 6.45 48.72 42.93 1.99 40.14
Consumer Cyclical 32 34.41 38.95 48.56 2.01 40.45

Consumer Staple 14 15.05 33.77 41.68 2.24 40.87
Energy 8 8.60 39.93 53.89 2.47 40.05

Industrial 18 19.35 40.24 53.90 2.01 39.90
Materials 11 11.83 32.85 49.34 2.73 41.35

Technology 4 4.30 45.22 40.20 1.29 38.95

Overall 93 100.00 38.68 48.39 2.14 40.39

Panel B2: Average CDS Spreads (%) by CDS Maturities and Sectors

Maturity of CDS

1-year 2-year 3-year 5-year 7-year 10-year

Communications 2.04 1.99 2.09 2.23 2.16 2.10
Consumer Cyclical 1.57 1.58 1.58 1.61 1.62 1.66

Consumer Staple 0.74 0.81 0.86 0.92 0.94 0.98
Energy 1.58 1.38 1.53 1.43 1.47 1.48

Industrial 1.29 1.38 1.41 1.46 1.48 1.53
Materials 0.92 0.96 1.03 1.10 1.14 1.20

Technology 1.38 1.43 1.48 1.48 1.51 1.52

Overall 1.34 1.36 1.40 1.44 1.45 1.49

Panel B3: Std. Dev. of CDS Spreads (%) by CDS Maturities and Sectors

Communications 4.82 4.13 4.58 4.74 4.33 3.80
Consumer Cyclical 6.19 5.25 4.65 4.06 3.85 3.65

Consumer Staple 2.08 2.21 2.18 2.10 2.02 1.92
Energy 5.60 3.66 4.80 3.32 3.45 3.14

Industrial 2.36 2.54 2.34 2.16 2.09 2.07
Materials 1.46 1.42 1.43 1.39 1.38 1.34

Technology 2.20 2.17 2.12 1.82 1.74 1.59

Overall 4.43 3.78 3.62 3.18 3.04 2.85
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Table 3 (continued)

Panel B: Estimate of the Default Boundary

# of Firms Structural Credit Risk Models Considered

Total 93 Black-Cox Longsta�-Schwartz DEJD

Mean 1.176 1.161 0.830

Std. Dev. (0.145) (0.274) (0.183)

Percentiles p5 p50 p95 p5 p50 p95 p5 p50 p95

0.640 1.055 1.923 0.536 1.049 2.018 0.419 0.752 1.734

Asymptotic SEs (0.006) (0.134) (0.217) (0.020) (0.173) (0.859) (0.020) (0.163) (0.316)

AAA 1 0.971 0.971 0.971 1.086 1.086 1.086 0.723 0.723 0.723

AA 6 0.844 0.905 2.296 0.751 1.034 2.442 0.807 1.553 1.773

A 25 0.887 1.362 2.425 0.751 1.180 2.449 0.304 0.886 1.904

BBB 44 0.638 1.072 1.685 0.597 1.057 1.835 0.443 0.696 1.174

BB 12 0.655 0.867 1.782 0.430 0.921 1.783 0.422 0.672 1.759

B 4 0.550 0.793 0.983 0.333 0.718 1.004 0.380 0.538 0.700

CCC 1 0.959 0.959 0.959 1.011 1.011 1.011 0.706 0.706 0.706

Communications 6 0.612 1.295 1.675 0.449 1.208 1.846 0.087 0.614 1.137

Consumer Cyclic 32 0.648 1.094 2.199 0.618 1.174 2.211 0.501 0.749 1.570

Consumer Stable 14 0.606 1.007 2.740 0.417 0.894 2.813 0.474 0.822 1.980

Energy 8 0.638 0.938 1.951 0.417 0.925 2.094 0.350 0.656 1.862

Industrial 18 0.660 1.019 1.840 0.635 1.033 1.813 0.405 0.710 0.953

Materials 11 0.865 1.062 1.513 0.756 1.150 1.657 0.427 0.807 1.025

Technology 4 0.655 0.958 1.630 0.548 0.928 1.636 0.635 0.775 1.767

Panel C: Estimates of Other Parameters in the DEJD and CDG Models

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

# of Firms Structural Credit Risk Models Considered

Total 93 DEJD Collin-Dufresne and Goldstein

Parameter λQ κ‘ ν φ

Mean 0.181 15.155 0.222 2.829

Std. Dev. {0.078} {3.258} {0.274} {2.070}

Percentiles p5 p50 p95 p5 p50 p95 p5 p50 p95 p5 p50 p95

0.042 0.126 0.499 0.446 15.347 35.466 0.069 0.163 1.180 -0.103 1.878 6.242

Asymptotic SEs (0.009) (0.029) (0.132) (0.007) (0.062) (0.439) (0.003) (0.008) (0.137) (0.048) (0.181) (1.867)

AAA 1 0.119 0.119 0.119 15.042 15.042 15.042 0.106 0.106 0.106 1.184 1.184 1.184

AA 6 0.057 0.092 0.227 1.608 17.715 22.097 0.185 0.293 1.988 0.359 3.142 36.208

A 25 0.034 0.113 0.277 10.189 16.826 35.489 0.099 0.173 0.555 1.352 2.279 10.199

BBB 44 0.054 0.123 0.465 8.717 15.357 35.489 0.068 0.142 0.261 -0.095 1.736 2.952

BB 12 0.008 0.209 0.483 0.047 1.414 20.708 -4.117 0.209 1.158 -12.185 1.367 11.763

B 4 0.420 0.493 0.981 0.476 5.191 8.877 0.069 0.261 1.017 -0.797 1.581 6.336

CCC 1 0.580 0.580 0.580 -0.021 -0.021 -0.021 1.566 1.566 1.566 37.416 37.416 37.416

Communications 6 0.044 0.166 0.420 1.905 12.767 15.833 0.191 0.255 1.389 1.428 3.091 29.644

Consumer Cyclic 32 0.060 0.151 0.559 0.126 15.434 33.934 0.069 0.164 1.946 -0.099 1.876 32.980

Consumer Stable 14 0.043 0.114 0.468 2.982 17.280 35.489 0.073 0.148 0.295 0.148 1.862 3.507

Energy 8 0.040 0.118 0.469 8.877 14.580 19.271 0.090 0.136 0.277 -0.797 1.340 3.508

Industrial 18 0.043 0.107 0.713 0.647 15.437 35.489 0.069 0.146 0.888 -7.485 1.743 2.796

Materials 11 0.057 0.096 0.441 0.062 17.096 24.548 -4.351 0.159 0.277 -0.025 1.908 5.671

Technology 4 0.001 0.088 0.114 0.406 8.633 16.944 0.195 0.418 1.209 -9.763 2.566 12.435
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Table 4: CDS Pricing Errors in Structural Credit Risk Models

This table reports the pricing errors of CDS spreads under each of �ve structural models. Pric-
ing errors are calculated as the average, absolute, average percentage, and absolute percentage
di�erences between the model implied and observed spreads, across six maturities, 1, 2, 3, 5, 7,
and 10 years, and monthly observations from January 2002 to December 2004. The �ve model
speci�cations include Merton (1974), Black and Cox (1976), Longsta� and Schwartz (1995),
Collin-Dufresne and Goldstein (2001), and the double exponential jump di�usion (DEJD)
model used in Huang and Huang (2012).

Firms CDS Pricing Errors in Five Di�erent Models

by ratings/sectors number Merton BC LS DEJD CDG Merton BC LS DEJD CDG

Panel A: Average Pricing Error (%) Panel B: Absolute Pricing Error (%)

Overall 93 0.37 -0.91 -0.71 -0.44 -0.18 1.54 0.99 0.98 0.75 0.78

AAA 1 -0.14 -0.30 -0.28 0.00 -0.11 0.24 0.30 0.28 0.19 0.20

AA 6 -0.19 -0.12 -0.16 -0.06 -0.03 0.19 0.15 0.16 0.09 0.11

A 25 -0.31 -0.25 -0.25 -0.08 -0.03 0.34 0.28 0.29 0.17 0.18

BBB 44 0.11 -0.63 -0.61 -0.32 0.00 1.23 0.66 0.68 0.45 0.59

BB 12 0.16 -1.65 -1.60 -0.10 -0.07 2.46 1.82 1.95 1.47 1.41

B 4 6.39 -4.34 -4.24 -3.62 -0.89 8.05 4.95 4.68 4.28 3.31

CCC 1 11.55 -12.95 4.00 -8.82 -10.92 17.14 12.96 10.26 9.94 11.43

Communications 6 -0.50 -1.61 -1.84 -1.51 -0.28 1.29 1.62 1.86 1.53 1.08

Consumer Cyclic 32 1.02 -1.09 -0.59 -0.50 -0.54 2.27 1.10 1.08 0.72 0.88

Consumer Stable 14 0.43 -0.64 -0.67 -0.13 -0.11 1.06 0.67 0.72 0.31 0.34

Energy 8 1.47 -1.04 -0.71 -0.71 -0.20 2.35 1.07 0.78 0.82 0.81

Industrial 18 -0.29 -0.61 -0.53 -0.53 0.08 0.85 0.92 0.90 0.70 0.71

Materials 11 -0.28 -0.69 -0.77 -0.41 0.60 0.81 0.70 0.80 0.54 0.94

Technology 4 -1.17 -1.19 -0.89 1.33 -0.56 1.17 1.19 0.94 1.92 0.97

Panel C: Average Percentage Pricing Error (%) Panel D: Absolute Percentage Pricing Error (%)

Overall 93 -29.62 -70.91 -68.94 -11.88 24.42 114.29 76.20 78.17 45.63 68.88

AAA 1 -6.60 -82.04 -74.13 47.96 3.40 70.69 82.04 75.42 80.03 56.99

AA 6 -100.00 -67.72 -85.95 -21.09 -3.91 100.00 82.60 86.11 44.56 69.12

A 25 -82.60 -71.86 -68.88 -1.95 9.69 97.29 78.14 80.27 47.33 55.39

BBB 44 -25.54 -72.85 -69.50 -17.29 40.35 119.78 76.84 78.82 44.37 80.26

BB 12 15.92 -70.77 -69.28 -6.81 16.01 111.45 72.73 76.82 43.01 58.47

B 4 182.82 -50.96 -50.61 -29.71 33.91 196.57 62.82 59.60 51.82 64.48

CCC 1 117.78 -50.82 -7.35 -16.28 -54.47 131.60 50.85 42.83 37.14 58.59

Communications 6 -62.16 -76.83 -77.03 -39.66 31.97 82.63 77.83 79.42 51.39 87.03

Consumer Cyclic 32 14.04 -72.77 -72.08 -6.97 6.22 154.04 75.83 80.02 43.77 60.93

Consumer Stable 14 -55.69 -71.10 -64.90 -17.18 3.18 107.27 80.71 79.44 38.03 43.72

Energy 8 -5.28 -66.81 -76.71 -23.08 17.52 133.16 71.67 78.17 38.10 50.46

Industrial 18 -51.63 -66.06 -56.16 -19.15 41.55 74.67 76.29 75.49 45.10 71.85

Materials 11 -66.48 -70.35 -73.29 9.67 86.40 85.74 72.67 75.50 58.27 125.59

Technology 4 -87.25 -77.93 -75.78 4.83 -0.78 87.25 79.34 76.47 61.09 60.87
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Table 5: Fitting Errors of Equity Volatility in Structural Credit
Risk Models

This table reports the �tting errors of equity volatility under each of �ve structural models.
Fitting errors are reported as the average, absolute, average percentage, and absolute percent-
age di�erences between the model implied and observed annualized equity volatility, across
monthly observations from January 2002 to December 2004. The �tted errors of equity volatil-
ity are calculated in a similar fashion. The �ve model speci�cations include Merton (1974),
Black and Cox (1976), Longsta� and Schwartz (1995), Collin-Dufresne and Goldstein (2001),
and the double exponential jump di�usion (DEJD) model used in Huang and Huang (2012).

Firms Fitting Errors of Equity Volatility in Five Di�erent Models

by ratings/sectors number Merton BC LS DEJD CDG Merton BC LS DEJD CDG

Panel A: Average Fitting Error (%) Panel B: Absolute Fitting Error (%)

Overall 93 5.32 -6.36 -0.77 -7.21 -0.53 26.11 12.09 17.01 11.61 11.87

AAA 1 -3.69 1.03 7.31 1.83 -5.03 12.04 14.42 15.55 13.56 11.81

AA 6 -23.91 -2.29 2.84 -7.97 -0.99 23.91 10.46 13.32 9.91 9.01

A 25 -13.77 -4.95 -6.78 -6.26 -1.15 15.66 10.00 10.66 9.50 8.40

BBB 44 1.92 -5.93 -2.88 -6.56 -1.16 18.32 10.48 13.20 10.01 9.42

BB 12 11.99 -6.82 12.08 -8.81 -1.16 23.79 14.08 24.70 15.89 16.10

B 4 75.80 -31.88 29.71 -17.42 -2.24 83.67 33.62 69.56 28.69 32.70

CCC 1 455.21 15.45 -64.06 -3.47 64.65 455.21 32.11 64.06 23.46 90.07

Communications 6 -8.80 -12.79 -6.90 -16.82 -3.37 18.82 17.07 17.90 18.56 18.03

Consumer Cyclic 32 20.28 -5.89 -5.46 -7.32 1.10 40.10 11.72 16.20 11.02 12.46

Consumer Stable 14 -1.46 -4.81 10.04 -4.15 -0.90 26.77 11.04 21.15 9.50 9.09

Energy 8 12.43 -13.50 -4.03 -2.80 0.76 26.93 15.37 22.73 10.35 11.94

Industrial 18 -2.68 -4.22 0.17 -8.48 -1.68 13.29 11.34 14.82 12.19 11.05

Materials 11 -7.08 -2.26 1.28 -4.84 -2.92 11.74 9.03 10.30 8.70 9.27

Technology 4 -13.54 -12.47 4.63 -12.17 1.19 18.44 16.37 24.39 21.18 18.43

Panel C: Average Pct Fitting Error (%) Panel D: Absolute Pct Fitting Error (%)

Overall 93 7.09 -5.44 6.40 -8.96 7.33 58.29 27.88 40.49 25.53 28.41

AAA 1 5.03 21.40 39.47 22.23 0.60 31.98 43.20 51.85 41.33 30.02

AA 6 -72.12 6.57 25.67 -15.04 6.61 72.12 31.67 45.25 25.31 27.39

A 25 -37.18 -4.21 -11.83 -8.99 5.20 44.10 28.02 29.56 24.74 25.49

BBB 44 12.06 -7.42 1.02 -9.32 6.11 48.81 26.10 35.00 24.02 25.59

BB 12 36.98 -4.59 39.25 -6.92 8.54 53.62 27.91 58.90 29.27 34.20

B 4 120.65 -28.54 64.24 -11.47 21.05 125.78 32.33 95.26 31.34 45.24

CCC 1 559.59 33.77 -75.23 -1.53 55.91 559.59 46.11 75.23 29.67 92.76

Communications 6 -13.47 -11.92 -10.51 -21.16 10.67 38.70 29.91 32.49 29.44 38.85

Consumer Cyclic 32 37.53 -6.48 -4.13 -11.58 7.48 84.72 27.37 38.63 24.56 27.90

Consumer Stable 14 -20.12 -0.98 26.74 -3.49 5.77 67.18 30.26 50.61 25.48 26.17

Energy 8 19.65 -18.90 15.72 -0.47 11.07 54.35 27.63 53.61 24.22 28.89

Industrial 18 -2.65 -0.80 2.79 -9.97 6.66 32.14 27.43 34.52 25.08 25.63

Materials 11 -18.31 0.83 11.02 -5.59 0.41 33.54 25.44 31.32 22.54 25.54

Technology 4 -21.83 -14.32 29.84 -10.53 21.20 38.76 29.83 57.78 40.55 44.02
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Table 6: Tests of Model-Implied Sensitivities

This table reports results from the following time-series regression

�c̃ds(t; t+ 5)i = �i + �1;i�r
10y
f;t + �2;i�

cds

E;i;t rx
E
i;t + uit

where �c̃ds(t; t+ 5)i denotes the monthly change in �rm-i’s 5-year CDS premium; rf10y
t the monthly

change in the 10-year interest swap rates; rxEi;t the monthly excess returns on �rm-i’s equity; and �
cds

E;i;t

denotes the month-t average of model-implied sensitivities across �rms in the same rating or industry
category as �rm i for a given structural model. For each month, these �rm speci�c hedge ratios are
averaged out within either rating (panel A) or industry (panel B) categories. The reported coe�cient
values are averaged estimates of �2;i across �rms; in angle brackets is reported the number of �rms where
�2;i = 1 is not rejected at the 5% signi�cance level for each of the �ve models; the statistics in brackets
are regression R2s. The �ve model speci�cations include Merton (1974), Black and Cox (1976), Longsta�
and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and the double exponential jump di�usion
model used in Huang and Huang (2012). The sample period is from January 2002 to December 2004.

Panel A: Rating Speci�c Average Sensitivities Panel B: Sector Speci�c Average Sensitivities

Regression
related
variables

Models Used Models Used

Rating # of Firms Merton BC LS DEJD CDG Sector # of Firms Merton BC LS DEJD CDG

��2;i AAA 1 0.92 0.75 0.73 0.87 1.25 Communications 6 1.33 0.70 0.72 1.30 1.25

# of No-Rej < 1 > < 0 > < 0 > < 1 > < 1 > < 6 > < 0 > < 4 > < 6 > < 4 >

R2 [0.307] [0.580] [0.532] [0.286] [0.269] [0.421] [0.101] [0.185] [0.418] [0.185]
��2;i AA 6 0.70 0.70 0.72 0.70 0.73 Consumer Cyclic 32 1.00 0.70 0.73 0.99 1.01

# of No-Rej < 0 > < 0 > < 1 > < 0 > < 4 > < 25 > < 0 > < 7 > < 26 > < 26 >

R2 [0.174] [0.137] [0.131] [0.172] [0.149] [0.292] [0.128] [0.140] [0.316] [0.194]
��2;i A 25 0.84 0.72 0.74 0.81 0.83 Consumer Stable 14 0.81 0.70 0.76 0.81 0.83

# of No-Rej < 15 > < 1 > < 5 > < 13 > < 19 > < 5 > < 0 > < 6 > < 4 > < 12 >

R2 [0.272] [0.262] [0.270] [0.270] [0.193] [0.194] [0.149] [0.123] [0.201] [0.169]
��2;i BBB 44 1.00 0.73 0.76 0.94 1.04 Energy 8 1.16 0.70 0.67 1.23 0.74

# of No-Rej < 41 > < 4 > < 6 > < 40 > < 35 > < 6 > < 0 > < 1 > < 6 > < 6 >

R2 [0.279] [0.236] [0.263] [0.278] [0.199] [0.160] [0.103] [0.107] [0.189] [0.219]
��2;i BB 12 1.58 0.81 0.76 1.42 0.94 Industrial 18 1.03 0.70 0.68 0.99 1.06

# of No-Rej < 10 > < 3 > < 2 > < 10 > < 12 > < 15 > < 0 > < 5 > < 13 > < 16 >

R2 [0.507] [0.385] [0.443] [0.506] [0.180] [0.268] [0.099] [0.139] [0.277] [0.133]
��2;i B 4 2.90 0.88 0.83 2.52 1.25 Materials 11 0.92 0.70 0.70 0.90 0.88

# of No-Rej < 4 > < 3 > < 3 > < 4 > < 4 > < 7 > < 0 > < 0 > < 7 > < 8 >

R2 [0.390] [0.360] [0.384] [0.393] [0.110] [0.276] [0.107] [0.111] [0.300] [0.166]
��2;i CCC 1 3.90 0.95 0.86 3.49 1.00 Technology 4 1.43 0.70 0.69 1.37 0.80

# of No-Rej < 1 > < 1 > < 1 > < 1 > < 1 > < 4 > < 0 > < 2 > < 3 > < 1 >

R2 [0.152] [0.089] [0.095] [0.171] [0.054] [0.596] [0.124] [0.109] [0.669] [0.423]

��2;i Overall 93 1.12 0.74 0.76 1.05 0.96 Overall 93 1.02 0.70 0.71 1.01 0.96

# of No-Rej < 72 > < 12 > < 18 > < 69 > < 76 > < 68 > < 0 > < 25 > < 65 > < 73 >

R2 [0.304] [0.263] [0.286] [0.302] [0.187] [0.281] [0.119] [0.132] [0.300] [0.186]
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Table 7: Hedging Performance of Structural Credit Risk Models

This table reports empirical results on the e�ectiveness of hedging changes in CDS spreads with
three types of hedge ratios. The �rst type (panel A) is �rm speci�c hedge ratios implied from �ve
estimated structural models: Merton (1974), Black and Cox (1976), Longsta� and Schwartz (1995),
Collin-Dufresne and Goldstein (2001), and the double exponential jump di�usion (DEJD) model
used in Huang and Huang (2012). The other two types of hedge ratios are obtained by averaging �rm
speci�c hedge ratios within either each credit rating (panel B) or each industry (panel C) category.
Measure of hedging e�ectiveness is 1-RMSEh=RMSEu, where RMSEh (RMSEu) is the root mean
square error of the hedged (unhedged) position. The statistics in parenthesis are standard errors of
this e�ectiveness obtained from 5,000 bootstrap simulations. The sample period is from January 2002
to December 2004.

Structural Models Used

Rating or Sector # of Firms Merton BC LS DEJD CDG Merton BC LS DEJD CDG

Panel A: Firm Speci�c Hedge Ratios Panel B: Rating Speci�c Average Hedge Ratios

AAA 1 -0.817 0.088 0.175 0.101 0.009 -0.817 0.088 0.175 0.101 0.009

(0.176) (0.833) (0.632) (0.085) (0.177) (0.176) (0.833) (0.632) (0.085) (0.177)

AA 6 0.001 -0.327 0.046 -0.095 0.018 0.030 -0.024 0.050 -0.069 0.035

(0.050) (0.318) (0.251) (0.033) (0.070) (0.000) (0.035) (0.023) (0.041) (0.022)

A 25 -0.067 -1.684 0.052 -0.129 0.014 0.099 -0.615 0.118 0.115 0.043

(0.038) (0.155) (0.119) (0.016) (0.034) (0.021) (0.141) (0.022) (0.030) (0.009)

BBB 44 0.005 -90.298 -113.276 0.001 0.022 0.089 -1.818 -2.057 0.109 0.053

(0.018) (0.116) (0.093) (0.012) (0.027) (0.022) (1.154) (1.147) (0.022) (0.032)

BB 12 0.113 -2.898 -2.237 -21.019 0.184 0.260 -0.058 0.083 -1.822 0.163

(0.042) (0.223) (0.176) (0.023) (0.050) (0.109) (0.092) (0.101) (0.543) (0.089)

B 4 0.119 -30.461 -0.114 0.039 0.045 0.112 -13.806 0.014 0.073 0.062

(0.064) (0.410) (0.308) (0.041) (0.088) (0.063) (6.826) (0.047) (0.022) (0.118)

CCC 1 0.058 -9.933 -0.053 0.018 0.001 0.058 -9.933 -0.053 0.018 0.001

(0.307) (0.806) (0.639) (0.085) (0.173) (0.307) (0.806) (0.639) (0.085) (0.173)

Overall 93 0.070 -29.824 -23.849 -5.133 0.035 0.099 -11.389 -0.359 -0.186 0.058

(0.016) (0.080) (0.053) (0.008) (0.018) (0.041) (3.628) (0.215) (0.112) (0.040)

Panel C: Sector Speci�c Average Hedge Ratios

Communications 6 0.143 0.098 0.133 0.082 0.090 0.124 0.104 0.078 0.067 0.050

(0.064) (0.322) (0.250) (0.033) (0.071) (0.027) (0.063) (0.038) (0.017) (0.060)

Consumer Cyclic 32 0.009 -9.674 -0.011 0.017 0.004 0.050 -0.011 0.039 0.047 0.032

(0.027) (0.137) (0.107) (0.014) (0.031) (0.009) (0.167) (0.007) (0.008) (0.005)

Consumer Stable 14 -0.054 0.003 0.030 0.060 0.193 0.060 0.053 0.056 0.057 0.052

(0.039) (0.208) (0.158) (0.021) (0.047) (0.015) (0.030) (0.010) (0.014) (0.023)

Energy 8 0.096 -36.861 -0.134 0.015 0.012 0.082 -5.429 0.028 0.048 0.030

(0.056) (0.267) (0.214) (0.028) (0.061) (0.036) (5.189) (0.014) (0.024) (0.016)

Industrial 18 -0.056 -71.679 -103.578 -2.329 0.206 0.113 -6.520 -7.482 0.207 0.096

(0.040) (0.186) (0.150) (0.020) (0.041) (0.097) (2.249) (2.243) (0.092) (0.057)

Materials 11 -0.297 -4.101 0.035 0.159 -0.198 0.045 -0.055 0.181 0.146 0.107

(0.065) (0.228) (0.187) (0.024) (0.053) (0.069) (0.088) (0.087) (0.051) (0.037)

Technology 4 0.148 0.098 -4.252 -38.955 0.076 0.208 0.171 -0.241 -12.060 0.075

(0.150) (0.395) (0.317) (0.042) (0.087) (0.070) (0.066) (0.506) (3.304) (0.028)

Overall 93 0.070 -29.824 -23.849 -5.133 0.035 0.076 -3.310 -1.206 -1.179 0.042

(0.016) (0.080) (0.053) (0.008) (0.018) (0.018) (1.331) (0.738) (0.571) (0.023)
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Table A1: Summary Statistics of Individual Names

This table reports credit ratings, 5-year credit default swap (CDS) spread, equity volatility, leverage
ratio, asset payout, and recovery rate, for each of the 93 �rms similar to those by ratings and sectors
in Table 1.

Last Five-Yr Equity Leverage Asset Recovery

Company Rating CDS (%) Volatility (%) Ratio (%) Payout (%) Rate (%)

Air Prods & Chems Inc A 0.238 28.358 33.067 2.086 40.863

Albertsons Inc BBB 0.692 35.540 54.662 3.650 41.008

Amerada Hess Corp BB 0.817 28.458 61.871 2.929 40.081

Anadarko Pete Corp BBB 0.427 31.244 47.816 1.688 39.439

Arrow Electrs Inc BBB 2.175 44.325 62.279 2.259 39.269

Autozone Inc BBB 0.708 33.269 30.222 0.827 41.977

Avon Prods Inc A 0.230 27.128 17.924 0.998 41.353

Baker Hughes Inc A 0.298 39.469 20.584 1.764 40.833

Baxter Intl Inc BBB 0.493 39.739 33.159 1.739 40.526

BellSouth Corp A 0.550 43.254 39.213 3.308 41.848

Black & Decker Corp BBB 0.389 29.569 45.897 1.566 42.200

Boeing Co A 0.517 36.815 56.877 1.744 39.336

BorgWarner Inc BBB 0.572 29.766 48.270 1.285 40.623

Bowater Inc BB 2.751 30.755 62.578 3.583 41.287

CSX Corp BBB 0.607 29.651 69.128 2.305 40.486

Campbell Soup Co A 0.319 27.171 36.114 2.699 40.063

Caterpillar Inc A 0.350 32.081 57.902 1.992 40.122

Cendant Corp BBB 1.595 42.626 59.864 1.291 39.440

Centex Corp BBB 0.895 41.148 69.613 2.543 40.670

Clear Channel Comms Inc BBB 1.413 45.192 35.378 1.487 40.789

Coca Cola Entpers Inc A 0.327 34.774 68.903 2.281 40.019

Computer Assoc Intl Inc BB 2.889 54.727 35.045 1.044 35.840

Computer Sciences Corp A 0.565 41.122 43.578 1.182 39.763

ConAgra Foods Inc BBB 0.470 27.510 43.829 3.516 39.320

Corning Inc BB 5.412 80.739 41.995 1.138 36.807

Delphi Corp BBB 1.470 40.828 77.164 1.535 40.539

Delta Air Lines Inc CCC 18.806 81.939 93.931 2.885 26.566

Devon Engy Corp BBB 0.732 31.487 56.495 2.281 40.513

Diamond O�shore Drilling Inc BBB 0.488 39.213 32.696 1.701 40.833

Dow Chem Co A 0.817 35.536 48.723 3.166 39.775
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Table A1 (continued)

Last Five Yr Equity Leverage Asset Recovery

Company Rating CDS (%) Volatility (%) Ratio (%) Payout (%) Rate (%)

IKON O�ce Solutions Inc BB 3.460 48.604 73.673 1.337 38.221

Intl Business Machs Corp A 0.381 31.166 32.683 0.578 39.991

Intl Paper Co BBB 0.740 30.566 58.274 2.944 39.674

J C Penney Co Inc BB 2.949 45.576 61.984 2.343 37.818

Jones Apparel Gp Inc BBB 0.634 32.547 26.906 1.353 41.338

Kerr Mcgee Corp BBB 0.745 26.472 59.613 3.398 41.242

Lockheed Martin Corp BBB 0.501 32.241 44.982 1.815 41.173

Lowes Cos Inc A 0.356 36.642 19.222 0.587 41.788

Ltd Brands Inc BBB 0.584 44.878 21.283 3.854 41.529

Lucent Tech Inc B 9.525 96.827 63.895 1.255 37.988

MGM MIRAGE BB 2.167 33.197 57.910 2.675 39.764

Masco Corp BBB 0.612 33.101 35.400 2.758 42.234

Mattel Inc BBB 0.534 35.721 21.203 2.269 40.322

May Dept Stores Co BBB 0.608 36.953 52.074 3.923 41.765

Maytag Corp BBB 0.773 38.307 58.938 2.213 41.476

McDonalds Corp A 0.322 38.651 30.956 2.107 40.051

Nordstrom Inc BBB 0.609 40.304 43.145 1.555 41.820

Norfolk Sthn Corp BBB 0.471 36.021 61.054 2.704 39.724

Northrop Grumman Corp BBB 0.675 26.992 51.679 1.844 40.890

Omnicom Gp Inc BBB 0.906 36.220 42.475 0.887 40.262

PPG Inds Inc A 0.360 27.727 37.415 2.667 42.133

Phelps Dodge Corp BBB 1.780 38.034 48.840 1.877 41.547

Pitney Bowes Inc A 0.211 27.063 46.124 2.645 41.674

Praxair Inc A 0.291 28.048 33.167 1.730 42.060

Procter & Gamble Co AA 0.163 23.275 21.002 1.289 40.450

Rohm & Haas Co BBB 0.353 29.283 43.281 2.241 42.235

Ryder Sys Inc BBB 0.590 29.285 65.616 2.294 39.827

SBC Comms Inc A 0.598 43.723 42.509 3.587 38.423

Safeway Inc BBB 0.724 39.373 52.084 1.893 41.592

Sara Lee Corp A 0.281 28.465 42.474 2.900 39.904

Sealed Air Corp US BBB 2.349 35.792 44.043 1.820 37.390

Sherwin Williams Co A 0.396 29.004 32.345 1.896 41.694

Solectron Corp B 4.976 86.414 54.483 1.908 39.241

Southwest Airls Co A 0.723 43.900 29.447 0.624 40.323

The Gap Inc BB 2.889 50.769 27.086 1.429 41.034

The Kroger Co. BBB 0.754 39.574 55.452 1.960 41.729

Tribune Co A 0.413 25.200 34.934 1.500 41.228

Utd Tech Corp A 0.260 30.856 37.047 1.116 39.475

V F Corp A 0.323 25.458 31.046 2.687 38.877

Valero Engy Corp BBB 1.075 36.741 65.574 2.174 40.715

Visteon Corp BB 2.671 46.160 87.957 1.297 41.348

Wal Mart Stores Inc AA 0.193 32.359 20.540 0.991 39.991

Walt Disney Co BBB 0.714 43.767 38.906 1.644 39.191

Weyerhaeuser Co BBB 0.753 29.759 62.255 3.509 41.164

Whirlpool Corp BBB 0.477 31.043 58.506 2.305 40.512

Williams Cos Inc B 6.836 84.181 83.953 3.724 35.851
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Fig. 1: Average CDS Spreads over the Full Sample Period

This �gure plots the average CDS spreads of 93 �rms with maturities ranging from 1
year to 10 years from January 2002 to December 2004. CDS spreads are in annualized
percentage.
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Fig. 2: Time Series of CDS Spreads and Equity Volatility

This �gure plots the average 5-year CDS spread (top panel) and the average realized
equity volatility (bottom panel) by rating groups (A-AAA, BBB, and CCC-BB) over
the period January 2002{December 2004. Realized equity volatility is estimated
using 5-minute intraday stock return data.
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Fig. 3: Leverage Ratio and the Estimated Default Boundary

This �gure shows three scatter plots between the observed leverage (debt/asset)
ratio and the estimated default boundary (scaled by debt) for the sample of 93 �rms
over the period January 2002{December 2004. The three models with a at barrier
considered include Black and Cox (1976), Longsta� and Schwartz (1995), and the
double exponential jump di�usion (DEJD) model used in Huang and Huang (2002).
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Fig. 4: Observed and Model-Implied CDS Term Structures

This �gure plots the time-series average of both observed and model-implied CDS
term structures, by three rating groups, over the period January 2002{December
2004. The structural models considered include Merton (1974), Black and Cox
(1976), Longsta� and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and
the double exponential jump di�usion (DEJD) model used in Huang and Huang
(2002).
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Fig. 5: Observed and Model-Implied 5-Year CDS Spreads

This �gure plots observed and model-implied 5-year CDS spreads, for three rating
groups, over the period January 2002{December 2004. The structural models consid-
ered include Merton (1974), Black and Cox (1976), Longsta� and Schwartz (1995),
Collin-Dufresne and Goldstein (2001), and the double exponential jump di�usion
(DEJD) model used in Huang and Huang (2002).
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Fig. 6: Observed and Model Implied Equity Volatility

This �gure plots the realized volatility|estimated using 5-minute intraday stock
returns|and model-implied equity volatility, for three rating groups, over the period
January 2002{December 2004. The structural models considered include Merton
(1974), Black and Cox (1976), Longsta� and Schwartz (1995), Collin-Dufresne and
Goldstein (2001), and the double exponential jump di�usion (DEJD) model used in
Huang and Huang (2002).
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Fig. 7: Observed Spot Leverage and the Long-Run Mean of Risk-
Neutral Leverage

This �gure plots the observed spot leverage (debt/asset) and the model-implied
long-run mean of the risk-neutral leverage, for three rating groups, over the period
January 2002{December 2004. The long-run mean of the risk-neutral leverage is
estimated using the Collin-Dufresne and Goldstein (2001) model.
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Fig. 8: Model Implied Risk-Neutral and Real Default Probabilities

This �gure plots the time series and term structure of model-implied default prob-
abilities under either the risk-neutral measure (panel A) or the physical measure
(panel B) based on the Black and Cox (1976) model.

 Electronic copy available at: https://ssrn.com/abstract=968020 



56 Jing-Zhi Huang et al.

1 2 3 4 5 6 7 8 9 10

Maturity(yr)

0

1

2

3

4

5

6

Pe
rc

en
t

Rating A

1 2 3 4 5 6 7 8 9 10

Maturity(yr)

0

2

4

6

8

Pe
rc

en
t

Rating BBB

1 2 3 4 5 6 7 8 9 10

Maturity(yr)

0

5

10

15

20

25

Pe
rc

en
t

Rating BB

Model-Implied Q Model-Implied P Historical

Fig. 9: Term Structures of Average Default Rates, and Model Im-
plied Risk-Neutral and Real Default Probabilities

This �gure plots the term structure of average default rates (solid line), model-
implied default probabilities under both the risk-neutral measure (blue dashed line)
and the physical measure (red dotted line) based on the Black and Cox (1976) model,
for three di�erent rating groups, single A (panel A), BBB (panel B), and BB (panel
C).
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