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Abstract. We show that quantile regression is better than ordinary-least-squares (OLS)
regression in forecasting profitability for a range of profitability measures following the
conventional setup of the accounting literature, including the mean absolute forecast
error (MAFE) evaluation criterion. Moreover, we perform both a simulated-data and an
archival-data analysis to examine how the forecasting performance of quantile regression
against OLS changes with the shape of the profitability distribution. Considering the
MAFE and mean squared forecast error (MSFE) criteria together, we see that the quantile
regression is more accurate relative to OLS when the profitability to be forecast has a
heavier-tailed distribution. In addition, the asymmetry of the profitability distribution has
either a U-shape or an inverted-U-shape effect on the forecasting accuracy of quantile
regression. An application of the distributional shape analysis framework to cash flow
forecasting demonstrates the usefulness of the framework beyond profitability forecasting,
providing additional empirical evidence on the positive effect of tail-heaviness and
supporting the notion of an inverted-U-shape effect of asymmetry.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2020.3694.
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1. Introduction
It is in the interest of different parties, including in-
vestors, analysts, and companies themselves, to ob-
tain more accurate profitability forecasts. Companies
have experienced extreme profits and losses more
often in recent decades.1 This is likely to impact the
distributional shape of profitability, increasing the
difficulty in forecasting profitability accurately.

To formulate forecasts as accurately as possible,
sophisticated market participants are likely to resort
to statistical methods. Ordinary-least-squares (OLS)
regression is a very popular choice, if not the preva-
lent choice. The least squares method has a very long
history dating back to 1795 (Courgeau 2012). In con-
trast, quantile regression (QR), an alternative ap-
proach based on the least absolute deviation (LAD)
method, was developed only four decades ago by
Koenker and Bassett (1978). Unlike the least squares
method, the LAD method is not sensitive to outliers
(Chen et al. 2008). Despite this advantage, QR appli-
cations in finance and accounting remain not popular.2

However, QR has long been considered an attractive
method in areas such as medicine, survival analysis,
and economics (Yu et al. 2003).

In this study, we conduct a series of analyses to
examine whether the QR approach to profitability
forecasting can be more accurate than the OLS ap-
proach, and if so, under what distributional shape of
profi�lity
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Prior research on profitability forecasting examines
these traditional measures of profitability, because
they are the inputs to accounting-based valuation



accuracy of QR to tail-heaviness and asymmetry
using archival data. The data used comes from the
sample we use for the out-of-sample testing in the
forecasting analysis. Unlike the simulated experi-
ments, where it is straightforward to compute dis-
tributional shape measures based on many draws of
simulated profitability, archival data does not allow
this luxury. Even when some firms have sufficiently
long time series to give reliable estimates, the data
requirementwould induce a severe survivorship bias.
Therefore, we estimate the tail-heaviness and asym-
metry measures based on the profitability distribu-
tion across different firms for each industry-year. This
is consistent with the cross-sectional approach to
forecasting, which assumes that there is enough simi-
larity across different firms to warrant pooling them
together for forecasting,

The above is not the only difference between the
simulated and archival data. There are several. For
example, in the archival data, the individual firms’
absolute and squared forecast errors used for com-
puting the forecasting accuracy measures are based
on a full model consistent with Fairfield et al. (2009),
instead of the simple first-order autoregressivemodel
assumed in the simulated experiments. Moreover, the
archival data comes from an in-sample estimation
step using a rollingwindow of data available from the
previous 10 years, whereas the corresponding step in
the simulated experiments uses only one prior period
of simulated data.

Given such differences, it is not obvious that the
insights from the simulated experiments would be
robust enough to hold also in the archival data. We,
however, find a varying degree of support for the
insights. In both the unweighted and the weighted
regressions pooling all profitability measures together,
the effect of tail-heaviness on the accuracy of QR fore-
casts relative to OLS is significantly positive across all
the tail-heaviness measures controlling for any one of
the asymmetry measures. There is also clear support
for a positive effect of tail-heaviness from the individual-
profitability regressions for CbOP (cash flow approach)
and ROE and moderate support from those for OP,
CbOP (balance-sheet approach), and RNOA.

Considering the differences between the simulated
and archival data, we view the above finding from the
archival data as generally corroborating the simula-
tion results of the tail-heaviness effect. Similarly, in
the archival-data analysis, the pooled regression and
the ROE results show strong support for an inverted-
U-shape effect of asymmetry, whereas three of the six
profitability measures provide strong to moderate
support for a U-shape effect, with the remaining two
having no significant effect whatsoever. These results
echo the not-so-consistent effect of asymmetry found
in the simulated-data analysis.

To demonstrate the usefulness of the distributional
shapeanalysis frameworkbeyondprofitability forecasting,
we apply the framework to examine the out-of-sample
forecasting of cash flows from 1990 to 2015 studied
by Nallareddy et al. (2020). We show that the tail-
heaviness, measured by the kurtosis, of the yearly
cash flow distribution across all firms has a positive
effect on the incremental forecasting accuracy of QR,
whereas the asymmetry, measured by the skewness
coefficient, has an inverted-U-shape effect. We also
analyze various subsamples that exclude firms likely
to have contributed to the tail-heaviness and asym-
metry of the cash flow distribution. By confining our
analysis to these subsamples, we expect to see a
somewhat weaker relation between the incremental
forecasting accuracy and the distributional proper-
ties. The subsample findings are largely consistent
with our expectation. All in all, the results of the cash
flow distributional shape analysis for the full sample
and the various subsamples are in line with the earlier
findings for profitability forecasting.
To our knowledge, we are the first to provide large-

sample evidence of the effects of the profitability
distributional shape on the accuracy of QR forecasts
relative to OLS using both simulated and archival
data. Related prior simulation studies were done
20–30 years ago. They primarily focus on the LAD
estimators, rather than out-of-sample forecasts, or
otherwise on the small-sample forecasting perfor-
mance or use a simulation setup that has a maximum
of 1,000 draws repeated for only 20 times (Dielman
1986,Mitra 1987, Dielman andRose 1994). In contrast,
our setup has 2,500 draws repeated for 500 times
for each set of the distribution type and parameter
combinations. Most importantly, none of the prior
studies has considered asymmetry jointly with tail-
heaviness. We examine both aspects of the distribu-
tional shape using two four-parameter distribution
families that allow controlling not only the location
and scale but also the tail and skewness properties
separately. These families are the stable and the in-
verse hyperbolic sine (IHS) distributions (McDonald
and Turley 2011; Nolan 2013, 2019).
In making the contribution above, we develop a

framework of conducting simulated-data and archival-
data analysis of the profitability distributional shape
and its relation to forecasting accuracy under both the
MAFE and MSFE criteria. This includes the use of
various new measures, such as the incremental and















has expectedly superior performance under a crite-
rion favorable to it. An alternative forecasting ap-
proach cannot analogously achieve similarly strong
performance under the two criteria. Then it is rea-
sonable to consider the former forecasting approach
to be relatively more accurate.

More precisely, we look at the statistical test result
on the FIs in each simulated experiment. Then, out of
the 500 experiments for each distribution type and
parameter combination, we count the percentage of
the times a forecasting approach prevails under the
criterion favorable to it. To determine whether QR
prevails in an experiment under the MAFE criterion,
we compute the FIs for the 2,500 draws of next-period
profitability in the experiment like what we do in the
forecasting analysis reported in Table 3. Then we per-
form a statistical test to see if the mean FI is positive at
the 0.01 significance level using the t-test.9 Similarly,
we do this to see whether OLS prevails in an experiment
under the MSFE criterion with the forecast improve-
ments (FIs) redefined as the SFE of the QR forecast mi-
nus that of the OLS. Counting the results over the 500
experiments, we obtain the following measures for each
distribution type and parameter combination:

pct.QR.Prevail � Percentage of the timeswhere
quantile regression prevails
under theMAFE criterion;

pct.OLS.Prevail � Percentage of the timeswhere
OLSprevails under the
MSFE criterion.

We also consider the counterparts of these measures
by replacing the t-test with the Wilcoxon signed-rank
test. This is a test on the median FI. Thus, the coun-
terpart measures are better described as under the
median AFE (MdAFE) and median SFE (MdSFE)
criteria, respectively. Figure 2 in the online appendix
illustrates the empirical cumulative distributions of
the p-value of theWilcoxon (signed-rank) test and the
t-test from the 500 experiments for a moderately
heavy-tailed, highly skewed stable distribution.

We consider two forecasting accuracy measures
that benchmark the performance of QR under the
MAFE criterion against that of OLS under MSFE. The
incremental forecasting accuracy of QR is

IncrAccur � pct.QR.Prevail � pct.OLS.Prevail.

Because pct.OLS.Prevail represents the prevalence of
OLS over QR under theMSFE criterion, the lower this
measure, the more competitive the forecasting per-
formance of QR under this criterion unfavorable to it.
If QR and OLS do similarly well under the criteria
favorable to them, respectively, then IncrAccur should

be close to zero. If IncrAccur



The literature does not have a universally accepted
definition of the tails of a distribution. We use Taleb’s
definition for its simplicity (Taleb 2017, 2018



Table 4. Descriptive Statistics of the Simulated and Archival Data for the Distributional Shape Analysis

Panel A: Simulated data

Variable Mean Std. dev. Min. Median Max.

Forecasting accuracy (Wilcoxon-test based):
pct.QR.Prevail 0.319 0.313 0.012 0.185 0.972
pct.OLS.Prevail 0.033 0.026 0.000 0.026 0.102
IncrAccur 0.286 0.334 � 0.074 0.154 0.972
RelAccur 2.148 2.333 � 1.792 2.001 6.879
Forecasting accuracy (t-test based):
pct.QR.Prevail 0.338 0.323 0.014 0.198 0.982
pct.OLS.Prevail 0.175 0.139 0.000 0.124 0.612
IncrAccur 0.164 0.251 � 0.106 0.057 0.924
RelAccur 0.518 1.566 � 1.792 0.342 6.820
Distributional properties (mean-aggregated):
Mean%Extremes 0.136 0.102 0.000 0.137 0.319
Kurtosis† 3.884 1.897 1.104 4.294 7.247
Tail asymmetry‡ � 0.002 0.193 � 0.279 � 0.046 0.278
Mean-less-median‡ � 0.006 0.464 � 0.684 � 0.114 0.683
Skewness coefficient‡ � 0.097 1.253 � 2.451 � 0.315 2.275
sd(Pro� t.)† 0.798 1.325 0.224 0.264 8.127
Distributional properties (median-aggregated):
Mean%Extremes 0.135 0.104 0.000 0.140 0.320
Kurtosis† 3.092 1.635 1.102 3.142 7.204
Tail asymmetry‡ � 0.003 0.194 � 0.279 0.000 0.278
Mean-less-median‡ � 0.009 0.467 � 0.685 � 0.143 0.686
Skewness coefficient‡ � 0.110 1.107 � 2.320 � 0.313 2.162
sd(Pro� t.)† 0.530 0.719 0.198 0.242 4.702

Notes. This panel gives an overview of the 6,751 observations of profitability-industry-years used in the archival-data distributional shape
analysis. The sample is constructed from the firm-year observations used in the out-of-sample tests reported in Table 3. Aminimumof 20 firms in
each industry-year is required to avoid unreliable estimates of the profitability distributional properties. The industry classification is based on
two-digit SIC. The forecasting accuracy measures are computed for each profitability measure using the forecasting performance of the QR and
OLS approaches for eachfirm aggregated across all firms in an industry-year based on theMAFE andRMSFE criteria, respectively. Themeasures
of the distributional properties are computed for each profitability measure based on all firms in an industry-year. See panel B of Table 1 for
details of the variable definitions.

†Measures in log value; ‡measures in cube-root value.

Panel B: Archival data

Variable Mean Std. dev. Min. Median Max.

Size of industry-year 82.2 82.7 20 50 631
Forecasting accuracy:
� r.QR.Prevail 1.027 0.067 0.817 1.016 2.130
� r.OLS.Prevail 0.996 0.043 0.571 1.000 1.246
IncrAccur 0.031 0.104 � 0.422 0.018 1.559
RelAccur 0.298 1.003 � 4.137 0.181 13.167
Distributional properties:
Mean%Extremes 0.076 0.236 0.000 0.000 2.174
Kurtosis† 1.552 0.475 0.274 1.521 3.583
Tail asymmetry‡ 0.011 0.302 � 0.523 0.000 0.497
Mean-less-median‡ 0.064 0.671 � 1.142 0.378 1.129
Skewness coefficient‡ � 0.034 0.896 � 1.741 � 0.126 1.568
sd(Pro� t.)† � 1.978 0.386 � 3.238 � 1.964 � 0.824

Notes. This panel gives an overview of the 1,024 observations used in the simulated-data distributional shape analysis based on data from
512,000 simulated experiments (500 experiments for each set of the distribution type and parameter combination over 4 distribution types and
256 parameter combinations). The forecasting accuracy measures are computed based on the Wilcoxon-test- or t-test-based forecasting per-
formance of the QR and OLS approaches in each group of 500 simulated experiments of the 4 × 256 sets of the distribution type and parameter
combination. Themeasures of the distributional properties are computed based on the 2,500 draws of the simulated next-period firm profitability
to be forecast in each simulated experiment. Presented in this panel are these measures mean- or median-aggregated to the distribution
type–parameter combination level. See panel B of Table 1 for the definitions of the forecasting accuracy and distributional property measures.

†Variables in log value; ‡variables in cube-root value.
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• Distribution type fixed effects = Effects of whether
the distribution is positively or negatively skewed
stable or IHS;

• 	 = Error term.
Driven by goodness-of-fit considerations, the log

values of kurtosis and sd(Pro� t.) and the cube-root
values of the Asymmetric measures are used in the
regression. The cube-root transformation works much
like the log transformation but accepts and maintains
negative values (Cox 2011). We control for sd(Pro� t.)
because not all the measures involve the deflation by
the sample standard deviation and, even when some
do, deflation alone is not likely to remove the influ-
ence completely.

Table 5 show the results of the simulated-data re-
gression analysis at the mean-aggregated level for the
pooled regressions. Without an exception, the effect
of tail-heaviness on the incremental forecasting ac-
curacy of QR is significantly positive across all the
combinations ofHeavy and Asymmetricmeasures and
for both the Wilcoxon-test- and t-test-based defini-
tions of IncrAccur.

For asymmetry, we focus on the shape of its effect
on the incremental forecasting accuracy of QR. The
effect has a U-shape with the minimum around � � 2/
2� 3 if the coefficient � 3 of the Asymmetric2 term is
significantly positive (an inverted-U-shape if signif-
icantly negative). The results in the table show that
the shape of the asymmetry effect is consistently a
U-shape throughout.

The shape of the asymmetry effect is not as con-
sistent throughout Table 6, where the results for the
relative forecasting accuracy of QR for the pooled
regressions are presented. However, it is still highly
consistent when confining to only the Wilcoxon-test-
or only the t-test-based results. The asymmetry effect
has a U-shape in the former but an inverted-U-shape
in the latter. This mixed result is in sharp contrast to
the highly consistent significantly positive effect of
tail-heaviness in Table 6.

The individual-distribution regression results are
presented in Tables A1 andA2 in the online appendix.
Regardless of the distributions (stable or IHS) and
measures (IncrAccur or RelAccur), the results are
highly consistent with the corresponding pooled-
regression results. In an untabulated analysis, we
have examined also the median-aggregated versions
of the pooled and individual-distribution regressions,
and the results are very similar.

The findings above continue to hold in the regression
analysis at the experimental level, where the IncrAccur
or RelAccur is regressed on the experimental-level
profitability distributional properties with robust
standard errors adjusted for clustering by distri-
bution type–parameter combination. The effect of
tail-heaviness continues to be significantly positive

without an exception. The shape of the asymmetry
effect again is typically opposite for the Wilcoxon-
test- vs. the t-test-defined RelAccur. In the interest of
space, we do not tabulate these highly similar results.
In Table A3 (in the online appendix), we report

the regression results of the building blocks,
pct.QR.Prevail and pct.OLS.Prevail, of the incremental
and relative forecasting accuracy measures defined
based on the Wilcoxon (signed-rank) test. Panel A of
the table shows the findings for the pooled sample of
the stable and the IHS distributions. The breakdown
of IncrAccur or RelAccur into its building blocks re-
veals that pct.OLS.Prevail (i.e., the percentage of the
times where OLS prevails under the MSFE criterion)
always decreases with the tail-heaviness measures.
By contrast, pct.QR.Prevail (i.e., the percentage of the
times where QR prevails under the MAFE criterion)
always increases with the tail-heaviness measures.
This supports the notion that heavy-tailed profit-
ability distributions are driving the superior fore-
casting performance of QR under the MAFE criterion
reported in Table 3.
Table A4 (in the online appendix) presents the re-

gression results of pct.QR.Prevail and pct.OLS.Prevail
defined based on the t-test. Panel A of the table again
shows that pct.QR.Prevail increases with the tail-
heavinessmeasures, whereas pct.OLS.Prevail decreases
with the measures (except for the insignificant find-
ings when Asymmetric is tail asymmetry). Therefore,
the effect of tail-heaviness on the building blocks
of the incremental and relative forecasting accuracy
measures is highly consistent, regardless of the sta-
tistical test used to define the measures.
The finding of a U-shape effect of asymmetry on

pct.QR.Prevail is also highly consistent among the
regression results of the Wilcoxon-test- or the t-test-
basedmeasure.However, the shape of the asymmetry
effect on pct.OLS.Prevail is opposite between the re-
gression results reported in panels A of Tables A3 and
A4 (inverted-U-shape in the former and U-shape in
the latter). The difference again explains whywe need
both tests to see the not-so-robust effect of asymmetry
and the highly robust effect of tail-heaviness.
Panels B and C of Tables A3 and A4 show the

findings for the stable and the IHS distribution sep-
arately, which are very similar to those for the pooled
sample discussed above.

5.2. Regression Analysis of Archival Data
In the archival data used for the distributional shape
analysis, distributional properties are estimated for
each profitability measure using all firms in each
industry-year. The industry classification is based on
the two-digit SIC. The firm-year observations used to
construct the industry-year observations come from
the sample for out-of-sample testing reported inTable 3.
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A minimum of 20 firms in each industry-year is re-
quired to avoid unreliable estimates of the distribu-
tional properties.

The regression model is

DepVar � � 0 + � 1 Heavy + � 2 Asymmetric

+ � 3 Asymmetric2 + � 4 sd (Profit.)

+ Profitability fixed effects (only
for the pooled all-profitability regression)

+ First-digit SIC industry fixed effects
+ Year fixed effects + ε, (12)

where the Heavy and Asymmetric measures are the
same set as in the simulated-data analysis. The two
forecastingmeasures forDepVar are still referred to as
IncrAccur and RelAccur. However, they are redefined
as follows for the archival-data analysis:
IncrAccur � fir.QR.Prevail � fir.OLS.Prevail,

RelAccur � log
�
fir.QR.Prevail

�
� log

�
fir.OLS.Prevail

�
,

where � r.QR.Prevail = mean(AFEOLS)/mean(AFEQR)
is the forecast improvement ratio (FIR) of QR under the
MAFE criterion, and � r.OLS.Prevail = [mean(SFEQR)/
mean(SFEOLS)]

1/2 is the forecast improvement ratio
of OLS under the root mean squared forecast error
(RMSFE) criterion. The mean(�) operation in the fore-
cast improvement ratios is taken over all firms in an
industry-year. We use the RMSFE criteria, which has
the same ranking as MSFE, to define � r.OLS.Prevail so
that its scale is comparable to � r.QR.Prevail, and
hence, the meaning of IncrAccur as their difference is
more intuitive.

Industry and year fixed effects are included in the
regression. Robust standard errors adjusted for clus-
tering by profitability-industry-year are reported
in parentheses in the result tables. Because the
observations for each profitability measure are at
the industry-year level with the industry classifi-
cation based on the two-digit SIC, we use the
broader first-digit SIC to define the industry for the
industry fixed effects and robust standard errors.

Panel B of Table 4 provides the descriptive statistics
of the archival data used for the distributional shape
analysis. The mean and median sizes of each industry-
year are 82.7 and 50 firms, respectively. This variable
provides the weights for the size-weighted regressions
reported in Table 7, in addition to the unweighted
regressions.

RMSFE should be an evaluation criterion more
favorable to OLS. However, the mean � r.OLS.Prevail
is below one (0.996), whereas the mean � r.QR.Prevail
is above one (1.027). This necessarily results in a
positive mean IncrAccur, suggesting that on average
the forecasting accuracy of QR is higher relative to
OLS, just like in the simulated data.

The mean and median of the asymmetry measures
are nonzero, also like in the simulated data. Note that
the kurtosis reported in the panel and used in the
regressions is in log scale. Therefore, its median at
1.521 is equivalent to a value of 4.577 in the original
scale. This suggests that over half of the industry-years
have profitability distributions with tails heavier than
the Gaussian. However, with a minimum at 0.274 for
kurtosis in log scale, there should be cases with tails
lighter than the Gaussian, which do not exist at all in
the simulated data. This could be a reason for ex-
pecting results somewhat different from the simulated-
data analysis.
Table 7 shows the results of the archival-data

analysis at the industry-year level for IncrAccur as
the dependent variable. In panel A where the results
for the pooled all-profitability regressions are re-
ported, the effect of tail-heaviness on the incremental
forecasting accuracy of QR is significantly positive
across all the combinations of Heavy and Asymmetric
measures, aswell as for both the unweighted and size-
weighted regressions. This highly consistent result
also appears in panel E for the individual-profitability
regressions for CbOP_CF (except for the Mean%Ex-

mated coeffi
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The pooled regressions in panel A of Table 7 sup-
port the notion of an inverted-U-shape asymmetry
effect (with 10 of the 12 estimated coefficients of
the Asymmetric2 term being significantly negative).
However, this finding appears to be driven by the
result for ROE in panel G. Across all the regressions
for the other profitability measures, either there is
no significant asymmetry effect (for CbOP_BS and
CbOP_CF in panels D and E) or any significant
finding is consistent with a U-shape asymmetry effect
(for GP, OP, and RNOA in panels B, C, and F).

The untabulated results for RelAccur as the de-
pendent variable are very similar. Nearly all of the
regressions for GP andRNOAand half of those for OP
have a significantly positive coefficient of the Asym-
metric2 term, whereas the regressions for CbOP_BS
and CbOP_CF show no significant effect of asym-
metry. As in Table 7, the inverted-U-shape asym-
metry effect found in the pooled regressions appears
to be driven by the regression results for ROE. Ad-
ditionally, the pooled and individual regressions for
the profitability measures show consistent support
for a positive tail-heaviness effect. Overall, the evi-
dence from the archival-data analysis confirms the
key insight about the tail-heaviness effect from
the simulated-data analysis and highlights again the
mostly significant but not entirely consistent effect
of asymmetry (i.e., can be U-shape or inverted-
U-shape).

6. Application to Cash Flow Forecasting
To demonstrate the usefulness of our analysis
framework beyond profitability forecasting, we
apply the framework to examine the out-of-sample
forecasting of cash flows studied by Nallareddy et al.
(2020). They find that, under the MSFE criterion and
using the OLS approach, the first-order autoregressive
model (i.e.,using laggedcashflows to forecast cashflows)
is more accurate than the forecasting-by-lagged-earnings
model (i.e., using lagged earnings to forecast cash flows).

Following Nallareddy et al. (2020), we examine the
out-of-sample forecasts of cash flows for the period
from 1990 to 2015.We are interested to relate together
the annual time series of the cash flow distributional
properties and the incremental forecasting accuracy
of the QR approach against OLS. Prior research
mentions that the cash flow distribution has changed
significantly over time (Gassen 2018). In an untabu-
lated analysis, we find a moderate upward trend in
the yearly variation in the tail-heaviness of the cash
flow distribution across all firms: an OLS regression
of the tail-heaviness, measured as kurtosis in log
scale, on the year gives a slope coefficient of 0.027
(with a p-value of 0.053).

We compare the QR approach to estimating the first-
order autoregressive cash flow forecasting model

against the OLS approach. Note that the forecast-
ing-by-lagged-earnings model does not fit into the
simple/extended first-order autoregressive structure
upon which our analysis framework was developed.
Therefore, we do not expect that the QR approach
would prevail for this second model or that the
(perhaps nonpositive) incremental forecasting accu-
racy would be associated with the distributional prop-
erties of cash flows. Nonetheless, we are interested to
know whether to some extent the key insights of our
framework might hold after controlling for the cross-
sectional variability of the lagged earnings in the dis-
tributional shape analysis. Controlling for the variability
of this only predictor variable of the second model is
important because the variability is likely to adversely
impact the forecasting accuracy of both the QR and
the OLS approach perhaps unevenly.
We obtain the data of U.S. firms from the Com-

pustat North America annual fundamentals file on
WRDS. Consistent with Nallareddy et al. (2020), cash
flows (CF) are measured as cash flows from operations
adjusted for extraordinary items and discontinued op-
erations (derived from cash flow statements). Earnings
(EARN) are defined as income before extraordinary
items and discontinued operations. Both variables are
deflated by average total assets. Following them, we
exclude observations meeting any of the following
criteria: (i) sales of less than $10million; (ii) share price
of less than $1; (iii) SIC code in the range of 6000–6999
(i.e., in the financial services sector).13 This would
yield a sample of 110,597 firm-year observations if we
also followed them to winsorize all continuous in-
dependent variables of the full sample at the 1% and
99% levels. Instead, we mitigate the effects of outliers
only at the in-sample estimation stage to finalize the
sample used for the regression with a given rolling
window of data (e.g., the most recent two years of
available data as in Nallareddy et al. (2020)). This
alternative approach avoids a look-ahead bias. We
truncate the top and the bottom one percent of all
continuous variables used in the in-sample regres-
sion, rather thanwinsorize them, to be consistentwith
the literature our profitability forecasting analysis
builds upon. This prevents the clustering of obser-
vations around the 1% and 99% levels. To avoid a
look-ahead bias, there is no truncation on the sample
of the prior-year data for constructing the out-of-
sample forecasts and on the sample of the forecasts
constructed.
Figure 4 in the online appendix depicts the annual

time series of the incremental forecasting accuracy,
its forecast improvement ratio components, and the
distributional properties of cash flows. The temporal
variation of the incremental forecasting accuracy
(IncrAccur) of the QR approach (against OLS) for the
first-order autoregressive cash flow model is shown
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in the first chart of the figure. The components of
IncrAccur, namely, the forecast improvement ratio of
QR under the MAFE criterion ( � r.QR.Prevail) and the
forecast improvement ratio of OLS under the RMSFE
criterion ( � r.OLS.Prevail), are depicted in the second
and the third charts of the figure, respectively. Note
that � r.QR.Prevail is above one for nearly all the years,
whereas � r.OLS.Prevail is more evenly spread above
and below one. In other words, the QR approach
clearly prevails under theMAFE criterion but the OLS
approach on average cannot prevail even under the
RMSFE criterion more favorable to it. Consequently,
IncrAccur is positive for most of the years.

The fourth chart in the figure depicts the kurtosis of
the cash flow distribution, which shows a moderate
upward trend. The skewness coeffi



Table 8. Incremental Forecasting Accuracy and Cash Flow Distributional Shape: QR Forecasting vs. OLS

Panel A: Lagged cash flows or lagged earnings as the predictor variable, with short to long in-sample estimation windows

Window (years) 2 4 7 10
Predictor

CFt−1 CFt−1 EARNt−1 CFt−1 CFt−1 EARNt−1 CFt−1 CFt−1 CFt−1 CFt−1

Intercept 0.009** � 0.088** � 0.164*** 0.011* � 0.100* � 0.161*** 0.014** � 0.066 0.016*** � 0.053
(0.004) (0.038) (0.041) (0.006) (0.049) (0.048) (0.006) (0.048) (0.005) (0.041)

Heavy 0.016** 0.007** 0.022*** 0.011** 0.011*** 0.006*
(0.006) (0.003) (0.005) (0.004) (0.003) (0.003)

Asymmetric � 0.001 0.008*** � 0.006 0.002 � 0.005 � 0.004
(0.006) (0.002) (0.006) (0.004) (0.005) (0.005)

Asymmetric2 � 0.027** � 0.013** � 0.026*** � 0.013** � 0.011** � 0.003
(0.011) (0.006) (0.006) (0.005) (0.005) (0.006)

sd(CF) 0.677** 1.715*** 0.62 1.618*** 0.465 0.444
(0.297) (0.418) (0.407) (0.479) (0.422) (0.357)

sd(EARNt−1) � 0.315*** � 0.343***
(0.028) (0.030)

Observations 26 26 26 26 26 26 26 26 26 26
Adjusted R2 0 0.232 0.743 0 0.23 0.821 0 0.063 0 0.076
Notes. This panel presents the results of the cash flow distributional shape analysis for the full sample of U.S. firms based on out-of-sample
forecasts from 1990 to 2015 (with in-sample estimation data as far back as in 1987). The yearly observations used in this table are constructed from

the firm-year observations used for forecasting cash flows out-of-sample with a rollingwindow of in-sample estimation. Each yearly observation
is based on the distributional properties of cash flows, or lagged earnings, for the cross section of firms in a given year and the incremental
forecasting accuracy of the QR approach (vs. OLS) to forecasting cash flows for this cross section. The forecasting model used for comparing the
QR approach to OLS has the lagged cash flows or the lagged earnings as the only predictor variable (see Nallareddy et al. 2020). The dependent
variable of the distributional shape analysis in this table is the incremental forecasting accuracy IncrAccur computed yearly for a given forecasting
model. IncrAccur is defined as the forecast improvement ratio of QR under the MAFE criterion minus the forecast improvement ratio of OLS
under the RMSFE criterion. The independent variables in this table are: Heavy = kurtosis† of the cash flow distribution of a year; Asymmetric =
skewness coefficient‡ of the cash flow distribution of a year; sd(CF) = standard deviation of the cash flow distribution of a year; sd(EARNt−1) =
standard deviation of the lagged earnings distribution of a year. Cash flows (CF) are defined as net cash flow from operating activities less cash
flow from extraordinary items and discontinued operations (Compustat: OANCF – XIDOC). Earnings (EARN) are defined as income before
extraordinary items and discontinued operations (Compustat: IB). Both variables are deflated by total assets (Compustat: AT) averaged over the
current and the prior years. See Table 1 for the details of the definitions of IncrAccur, kurtosis, and skewness coefficient.

†Variables in log value; ‡in cube-root value; ***statistical significance at the 1% level; **5% level; *10% level.

Panel B: Subsamples for various exclusion criteria (lagged cash flows as the predictor variable and two-year in-sample estimation window)

Subsample excluding
Intangible-intensive

firms Loss firms Smaller firms Size-tails firms

Intercept 0.005** � 0.055 0.001 � 0.196*** 0.008** � 0.098*** 0.009*** � 0.047*
(0.002) (0.040) (0.002) (0.055) (0.003) (0.031) (0.003) (0.023)

Heavy 0.018 0.004 0.010** 0.011***
(0.012) (0.014) (0.004) (0.003)

Asymmetric 0.003 0.012** 0.008* 0.0002
(0.007) (0.005) (0.004) (0.005)

Asymmetric2 � 0.0005 � 0.002 � 0.020* � 0.017***
(0.010) (0.020) (0.011) (0.005)

sd(CF) 0.162 1.906*** 0.908*** 0.345*
(0.395) (0.604) (0.267) (0.191)

Observations 26 26 26 26 26 26 26 26
Adjusted R2 0 0.036 0 0.114 0 0.429 0 0.117

Notes. This panel presents the results of the cash flow distributional shape analysis for the subsamples excluding the following firms one at a
time: intangible-intensive � rms defined as the firms in the health, business equipment, telecommunication, and chemical sectors of the Fama-
French 12-industry classification, loss � rms defined as those with negative earnings (EARN < 0), smaller � rms defined as those below the first
quartile of the firm size distribution (where firm size is measured by total assets), and size-tails � rms defined as those outside the 12.5th and the
87.5th percentile of the firm size distribution. The dependent variable in this table is the incremental forecasting accuracy IncrAccur computed
yearly for the forecasting model with the lagged cash flows as the only predictor variable. See the note below panel A for other details.
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Panel B of Table 8 shows the subsample findings
based on the first-order autoregressive cash flow
modelwith a two-year in-sample estimationwindow.
Compared with the full-sample result (columns 1
and 2 of panel A), the magnitude or statistical sig-
nificance of the mean IncrAccur and of the estimated
coefficients of the Heavy and the Asymmetric2 terms is
generally lower. The few exceptions are the statisti-
cally more significant mean IncrAccur of the same
magnitude in column 7 and the statistically more
significant coefficients of the Heavy and the Asym-
metric2 terms in column 8 (but both coefficients are
lower in magnitude).

All in all, we conclude that the results of the dis-
tributional shape analysis for the cash flow forecasting
models and for the various subsamples are in line with
our earlier findings for profitability forecasting.

7. Conclusion
We document that QR performs better than OLS in
forecasting profitability for a range of profitability
measures under the MAFE criterion. Considering the
MAFE and the MSFE (RMSFE) criteria together, we
also examine how QR’s forecasting performance,
benchmarked against OLS’s, changes with the shape
of the profitability distribution. Specifically, we
perform a distributional shape analysis to relate the
forecasting accuracy of QR against OLS to the tail-
heaviness and asymmetry of profitability distribu-
tion. In the simulated-data analysis of this analysis, we
find a robust positive effect of tail-heaviness on the
accuracy of QR relative to OLS. The finding is strongly
tomoderately supported by the archival-data results of
the pooled and individual profitability (unweighted
and size-weighted) regressions.

In the simulated-data analysis, we also find that
asymmetry has either a U-shape or inverted-U-shape
effect on the accuracy of QR forecasts. Which of these
holds depends on (i) whether Wilcoxon-test- or t-test-
based evidence is relied upon to determine the prev-
alence of a forecasting approach under a given eval-
uation criterion (MAFE or MSFE) and (ii) whether the
accuracy measure is the incremental or the relative
forecasting accuracy. The archival-data analysis also
shows mixed evidence: the effect of asymmetry is
mostly significant but not entirely consistent (i.e., can
be U-shaped or inverted-U-shaped).

Applying the distributional shape analysis frame-
work to cash flow forecasting, we demonstrate the
usefulness of the framework beyond profitability
forecasting. The empirical results support the notion
of an inverted-U-shape effect of asymmetry and pro-
vide additional evidence on the positive effect of
tail-heaviness.

In this study, we have only scratched the surface of
QR’s usefulness by focusing on themedian regression

as its special case. QR in general can produce optimal
estimates/forecasts for asymmetric loss functions
(when � ≠ 0.5). Prior research has argued that fi-
nancial analysts have an asymmetric loss function
(Clatworthy et al. 2011). If they do, would they find
formulating their forecasts based on QR with � ≠ 0.5
more aligned with their forecasting objective? What
is the implied � that can be inferred from analyst
earnings forecasts? Are the implied � ’s similar across
different types of analyst forecasts (cash flow fore-
casts, revenue forecasts, etc.)? These are interesting
questions left for future research to answer.

Acknowledgments
The authors are indebted to the anonymous associate editor
and referees for their valuable comments and suggestions.
They thank Yachang Zeng and participants of the 2017
Australasian Finance and Banking Conference (AFBC) at
Sydney, Australia; and 2017 European Accounting Asso-
ciation (EAA) Annual Congress at Valencia, Spain for their
helpful comments and suggestions. Hui Tian thanks Not-
tingham University Business School, United Kingdom; and
the University of Bath, United Kingdom, where parts of this
work were carried out during 2014–2016 and 2016–2018. All
remaining errors are the authors’ own.

Endnotes
1List of largest corporate profits and losses, 2019. Wikipedia, https://
en.wikipedia.org/wiki/List_of_largest_corporate_ profits_and_losses
(accessed August 10, 2019).
2The applications in finance that we are aware of include return
forecasting, portfolio analysis, and risk measurement (Lauridsen
2000, Bassett and Chen 2001, Pohlman and Ma 2010). Recent ap-
plications in accounting include forecasting risk in earnings
(Konstantinidi and Pope 2016).
3Forecasting earnings in practice is often equivalent to forecasting
profitability (e.g., Li 2011, Chang et al. 2020). Data samples used to
forecast earnings typically include firms of different sizes. Deflation
is a technique to control for the size differences.��

https://en.wikipedia.org/wiki/List_of_largest_corporate_ profits_and_losses
https://en.wikipedia.org/wiki/List_of_largest_corporate_ profits_and_losses


7A firm-year observation’s SIC code is identifiable if its value is not
missing or otherwise may be imputed based on the nonmissing SIC
code of the firm in the nearest future year.
8The U.S. Postal Service category comprises all establishments of the
U.S. Postal Service as an agency of the executive branch of the U.S.
federal government responsible for providing postal service in the
United States. The public administration category contains the ex-
ecutive, legislative, judicial, administrative, and regulatory activities
of federal, state, local, and international governments.
9We have considered also the 0.05 significance level, and the findings
are highly similar.
10To be precise, in defining RelAccur, we set pct.QR.Prevail and
pct.OLS.Prevail to 0.5/500 = 0.001 whenever they have a zero value.
Note that, for any given setup ofM experiments (M = 500 in our case),
the lowest nonzero value of pct.QR.Prevail and pct.OLS.Prevail is 1/M.
So the adjustment above avoids any undefined/infinite value due to
the log transformation while maintaining the intended ranking of the
RelAccur measure.
11Nassim N. Taleb, Distinguished Professor of Risk Engineering at
the New York University Tandon School of Engineering and the
author of the best seller The Black Swan: The Impact of the Highly
Improbable, defines the fat tails of a perturbed Gaussian distribution to
start from the mean minus and plus approximately 2.136 times the
standard deviation.
12We also have considered two additional asymmetry measures and
one additional tail-heavinessmeasure explained in Appendix C in the
online appendix. The inclusion of these measures does not change the
highly consistent findings of the tail-heaviness effect. In the interest of
space, we omit these measures from the reported tables.
13 If the SIC code of afirm-year observation ismissing,we impute the value
based on the nonmissing SIC code of the firm in the nearest future year.
14This means that for the 10-year window case, only three years of
available cash flows data (i.e., from 1987 to 1989) are used in the in-
sample estimation for constructing the 1990 forecasts; only four years
of available data (i.e., from 1987 to 1990) are used for constructing the
1991 forecasts; and so forth. See also the explanation in footnote 6.
15We downloaded the definition of the Fama-French 12-industry
classification on March 31, 2020 from https://mba.tuck.dartmouth
.edu/pages/faculty/ken.french/Data_Library/det_12_ind_port.html.
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