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Abstract:

The creation of an Atlas of the Industry is a sub-project within our center's
research on the transformation of scientific and technological achievements.
The objective is to gain a comprehensive understanding of the core
technologies driving cutting-edge innovations, assess the technological
competitiveness of leading enterprises, and track researchers' progress to
enhance the efficiency of technology transfer. This research will be
conducted in a series, focusing on commercial applications in key national
strategic scientific and technological fields, with a strong emphasis on

timeliness.

This report delves into the autonomous surgical robots industry within
biomedical research. Autonomous surgical robots represent an emerging
field in surgical robotics aimed at enhancing surgery through advanced
technologies such as computer vision, perception, motion control, and

2 Thanks to intern Jie Wang of Research Center for Sci-Tech and Finance at PBCSF Tsinghua University for his research

assistance in this report. Jie Wang is PhD. student at School of Biomedical Engineering, Tsinghua University. Thanks to Dr.
Surong Hua and his team from Peking Union Medical College Hospital for their valuable comments on this report.
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artificial intelligence. These innovations seek to improve surgical accuracy,
safety, and efficiency while reducing the reliance on direct manual
intervention by surgeons. Recent years have seen rapid advancements in
autonomous surgical robots driven by technological progress and clinical
demands. They are primarily used for straightforward, repetitive tasks such

as suturing.

Globally, the STAR (Smart Tissue Anastomosis Robot) system, developed
by the University of North Carolina at Wilmington and other institutions,
stands at the forefront of this development. STAR integrates multiple
sensing technologies, including optical cameras and near-infrared
fluorescence imaging, coupled with deep-learning algorithms for tissue
recognition and tracking. It employs intelligent planning algorithms to
autonomously perform critical surgical steps like suturing, demonstrating
superior accuracy and stability compared to manual methods in animal trials.
The STAR system currently operates at level 3 autonomy, indicating

supervised autonomy, with expectations for further enhancements.

In China, research teams from Beijing University of Aeronautics and
Astronautics (BUAA) and Beijing University of Posts and
Telecommunications (BUPT) are exploring autonomous surgical
technologies, primarily using binocular camera-based perception systems.
Although initial research has shown promise, current applications in surgical
tasks like incision closure and tissue surface blood removal remain relatively
basic. Domestic efforts are still confined to laboratory validations,

necessitating further validation through animal and clinical trials.
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The development of autonomous surgical robots faces several challenges:
advancing core technologies, establishing standards encompassing safety
and ethics, validating clinical effectiveness under surgical conditions, and
navigating unclear legal frameworks and business models, which hinder
industrialization. For these reasons, there are no mature autonomous surgical

robot products available today.

Looking forward, advancements in artificial intelligence, micro-nano
manufacturing, and localized components are expected to propel
autonomous surgical robots towards greater precision, minimally invasive
capabilities, and intelligence. This evolution anticipates routine integration

into clinical departments such as urology, gynecology, and general surgery,
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