

研究报告

Research Report

September 14, 2024

Atlas of Autonomous Surgical Robot ²

Research Center for Sci-Tech and Finance Yashu Zhu, Bibo Liu

Abstract:

2
24
26
27
28
30
33
42
43
46

4					1-1
7					1-2
10					2-1
11	•••••				2-2
12					2-3
(b)		(a)		STAR	2-4
(d)13	LED		(c)		
(c)	(b)	Endo360	(a)	STAR	2-5
14			••••••	•••••	•••••
(c)	(b)	Endo360	(a)	STAR	2-6
15			•••••	••••••	•••••
16			•••••		2-7
(a)					2-8
17		(c)		(b)	
(b)18		(a)			2-9
(b)19		(a)			2-10
	(b)		(a)	STAR	2-11
20		(c)			
20				STAR	2-12
22	•••••				2-13
23					2-14
24					2-15
27	•				3-1
Inc. USA28	Accuray I		nife M6	CyberK	3-2

30	STAR	4-1
31		4-2
34		4-3
39		4-4
25		3-1
36		4-1
38	2020	4-2
		4-3

" "

STAR 3

2022 Saeidi [1] Science Robotics

Autonomous robotic laparoscopic surgery for intestinal anastomosis

" "

1-1

1-1 1-

3 4-8

9-10

1

2

3

4

5

8

4 5

[2]

10 8 5

1

Óbuda Haidegger^[3]

ISO/IEC1

1-2

[3]

0

1

3

1 STAR

STAR Smart Tissue Anastomosis Robot

- Leonard

[34] 2014 STAR

STAR

2022 Saeidi [12]

Science Robotics

Autonomous robotic laparoscopic surgery for intestinal anastomosis

STAR

Smart Tissue Anastomosis Robot

STAR 2016 -

Shademan [9]

Science Translational Medicine

3D NIRF Near-Infrared Fluorescent Imaging

2016 Shademan [9] STAR

2-1

[10]

2-1 b)

Endo 360°

[8]

2-1 c)-h)

Saeidi ^[12] STAR 2-2

U-net

STAR 3

2-3e

Leonard [14]

2-3

STAR 3

2-3e

Leonard [14]

2-3

(d) (c)

-

Shademan [21] Near-

infrared, NIR 2-4

ICG

3

STAR

STAR

STAR

- Leonard [22]

RGB RGB

2-5 STAR

0.5 mm 0.2 mm

Leonard [23]

STAR

Endo360

STAR

2-6

STAR

Endo360

Decker [24]

2-7

0.90 mm

STAR

2017 Decker [25]

2018 Hanh

[26]

2-9

20 mm 0.25

mm

2019 Saeidi [27]

2-10

STAR

2.9

2023 Kam [28]

DeepLabCut [29]

DeepLabCut

DeeperCut[30] (ResNet)^[31]

[29]

2-11 STAR

STAR

STAR

2-12

STAR STAR

4

Pedram [6] Raven-IV 2-13

2.07 mm 4.29° 2 3 [7]

3 4

Su [18]

2-14

[19]

Mask R-CNN

Wang [20]

2-15

0.21 mm 0.65°

STAR

3-1

STAR

STAR

STAR 3

STAR

Axel Krieger Peter C.W. Kim Pediatric Surgeon	Johns Hopkins University Brown University	Medical Devices Robotics Smarter Surgical Tools	STAR	3
Azad Shademan	Intuitive Surgical Inc.	Surgical Robotics; Computer Vision;		

		Visual Control; Visual Servoing	
Simon			
Leonard	Johns Hopkins University	Robotics; Computer Vision	
	Beihang University	Medical Imaging Analysis; Computer Vision; Surgical Navigation; Medical Robotics	3
	Beijing University of Posts and Telecommunications	Medical Robots	4

Muradore ^[15] FR7

3-1 UR5 3-1 I-SUR 3-1

I-SUR

[17]

4

CyberKnife

Accuray Inc. USA

KR 240

3-2 CyberKnife

X

CT

X

CT

CT

[33] CyberKnife

4

5

STAR

STAR

4-1

STAR

AR/VR

31.3%

2022 3.2 , 2027
12.5 , 31.3%

Lytro Raytrix Lytro
2018 Google

Lytro

Ren Ng Lytro

2D 3D Lytro 2012

STAR

1

1

STAR Endo360

STAR

2022 3 ASIRT

440

2021 6

COR-KNOT

4-1

Medtronic

Smith

Nephew, Inc.

Boston Scientific Corporation

Sutrue Limited B. Braun SE

			2023	
Medtronic	1949		31686	
Smith Nephew	1856		5549	
Boston Scientific Corporation	1979		14240	
Sutrue Limited	2012	-	-	
B. Braun SE	1839	-	8924	16
	2017		-	

(A)	ţ.
-----	----

				30
()	2018	-	

()

2

1 4-2

		2021		
	C3	2023		
	С	2021	2	LYFE Capital OrbiMed OctagonCapital Sage Partners
	B+			

Pre-B+ 2023 2

3. 4

Endowrist

Sureform

3D 4 1 3 3 1 2 1 3 4 1 3

			3D	
1				

Xi

3	7	 4D	
1 3	7	3D	

Autonomous Surgical Robot

Enteroanastomosis

Smart Tissue Anastomosis Robot STAR

STAR

Near-Infrared Fluorescence Imaging NIRF

Autom

- 10. Decker R, Shademan A, Opfermann J, et al. Performance evaluation and clinical applications of 3d plenoptic cameras[C]//Next-Generation Robotics ence and Bioinspired Computation: Theory and Applications IX: volume 9494. SPIE, 2015: 62-72.
- 11. Shademan A, Dumont M F, Leonard S, et al. Feasibility of near-infrared markers for guiding surgical robots[C]//Optical Modeling and Performance Predictions VI: volume 8840. SPIE, 2013: 123-132.
- 12. Saeidi H, Opfermann J D, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis[J]. Science Robotics, 2022, 7(62): eabj2908.
- 13. Le H N, Nguyen H, Wang Z, et al. Demonstration of a laparoscopic structured-illumination three-dimensional imaging system for guiding reconstructive bowel anastomosis[J]. Journal of biomedical optics, 2018, 23(5): 056009.
- 14. Leonard S, Opfermann J, Uebele N, et al. Vaginal cuff closure with dualarm robot and nearinfrared fluorescent sutures[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(3): 762-772.
- 15. Muradore R, Fiorini P, Akgun G, et al. Development of a cognitive robotic system for simple surgical tasks[J]. International Journal of Advanced Robotic Systems, 2015, 12(4): 37.
- 16. Khatib O. Inertial properties in robotic manipulation: An object-level framework[J]. The international journal of robotics research, 1995, 14(1): 19-36.
- 17. Franken M, Stramigioli S, Misra S, et al. Bilateral telemanipulation with time delays: A twolayer approach combining passivity and transparency[J]. IEEE transactions on robotics, 2011, 27(4): 741-756.

- 18. Su B, Yu S, Li X, et al. Autonomous robot for removing superficial traumatic blood[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2021, 9: 1-9.
- 19. He K, Gkioxari G, Doll ár P, et al. Mask r-cnn[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
- 20. Wang J, Yue C, Wang G, et al. Task autonomous medical robot for both incision stapling and staples removal[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3279-3285.
- 21. Shademan A, Dumont M F, Leonard S, et al. Feasibility of near-infrared markers for guiding surgical robots[C]//Optical Modeling and Performance Predictions VI. SPIE, 2013, 8840: 123-132.
- 22. Leonard S, Shademan A, Kim Y, et al. Smart Tissue Anastomosis Robot (STAR): Accuracy evaluation for supervisory suturing using near-infrared fluorescent markers[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 1889-1894.
- 23. Leonard S, Wu K L, Kim Y, et al. Smart Tissue Anastomosis Robot (STAR):

 A Vision-Guided Robotics System for Laparoscopic Suturing[J].IEEE

 Transactions on Biomedical Engineering, 2014, 61(4):13051317.DOI:10.1109/TBME.2014.2302385.
- 24. Decker R, Shademan A, Opfermann J, et al. Performance Evaluation and Clinical Applications of 3D Plenoptic Cameras[C]//Next-Generation Robotics.2015.
- 25. Decker R S , Shademan A , Opfermann J D ,et al. Biocompatible Near-Infrared Three-Dimensional Tracking System[J].IEEE Transactions on Biomedical Engineering, 2017, 64(99):549-556.DOI:10.1109/TBME.2017.2656803.
- 26. Le H N D, Nguyen H, Wang Z, et al. Demonstration of a laparoscopic structured-illumination three-dimensional imaging system for guiding

- reconstructive bowel anastomosis[J]. Journal of biomedical optics, 2018, 23(5): 056009-056009.
- 27. Saeidi H, Le H N D, Opfermann J D, et al. Autonomous laparoscopic robotic suturing with a novel actuated suturing tool and 3D endoscope[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 1541-1547.
- 28. Kam M, Wei S, Opfermann J D, et al. Autonomous System for Vaginal Cuff

- 35. Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[D]. Stanford university, 2005.
- 36. Automated Suturing Devices Market Insights, Competitive Landscape, and Market Forecast 2030

STAR STAR

