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We derive limit theorems for the empirical distribution function of
\devolatilized" increments of an Itô semimartingale observed at high
frequencies. These \ devolatilized" increments are formed by suitably
rescaling and truncating the raw increments to remove the e�ects of
stochastic volatility and \large" jumps. We derive the limit of the
empirical cdf of the adjusted increments for any Itô semimartingale
whose dominant component at high frequencies has activity index of
1 < � � 2, where � = 2 corresponds to di�usion. We further derive
an associated CLT in the jump-di�usion case. We use the developed
limit theory to construct a feasible and pivotal test for the class of
Itô semimartingales with non-vanishing di�usion coe�cient against
Itô semimartingales with no di�usion component.

1. Introduction. The standard jump-di�usion model used for model-
ing many stochastic processes is an Itô semimartingale given by the following
di�erential equation

(1.1) dXt = �tdt+ �tdWt + dYt;

where �t and �t are processes with c�adl�ag paths, Wt is a Brownian motion
and Yt is an Itô semimartingale process of pure-jump type (i.e., semimartin-
gale with zero second characteristic, De�nition II.2.6 in [10]).

At high-frequencies, provided �t does not vanish, the dominant compo-
nent of Xt is its continuous martingale component and at these frequencies
the increments of Xt in (1.1) behave like scaled and independent Gaussian
random variables. That is, for each �xed t, we have the following convergence

(1.2)
1p
h

(Xt+sh �Xt)
L�! �t � (Bt+s �Bs); as h! 0 and s 2 [0; 1];

where Bt is a Brownian motion and the above convergence is for the Sko-
rokhod topology, see e.g., Lemma 1 of [19]. There are two distinctive features
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of the convergence in (1.2). The �rst is the scaling factor of the increments
on the left side of (1.2) is the square-root of the length of the high-frequency
interval, a feature that has been used in developing tests for presence of
di�usion. The second distinctive feature is that the limiting distribution of
the (scaled) increments on the right side of (1.2) is mixed Gaussian (the
mixing given by �t). Both these features of the local Gaussianity result in
(1.2) for models in (1.1) have been key in the construction of essentially
all nonparametric estimators of functionals of volatility. Examples include
the jump-robust Bipower Variation of [5, 6] and the many other alternative
measures of powers of volatility summarized in the recent book of [9]. An-
other important example is the general approach of [15] (see also [14]) where
estimators of functions of volatility are formed by utilizing directly (1.2) and
working as if volatility is constant over a block of decreasing length.

Despite the generality of the jump-di�usion model in (1.1), however, there
are several examples of stochastic processes considered in various applica-
tions that are not nested in the model in (1.1). Examples include pure-
jump Itô semimartingales (i.e., the model in (1.1) with �t = 0 and jumps
present), semimartingales contaminated with noise or more generally non-
semimartingales. In all these cases, both the scaling constant on the left side
of (1.2) as well as the limiting process on the right side of (1.2) change. Our
goal in this paper, therefore, is to derive a limit theory for a feasible ver-
sion of the local Gaussianity result in (1.2) based on high-frequency record
of X. An application of the developed limit theory is a feasible and piv-
otal test based on Kolmogorov-Smirnov type distance for the class of Itô
semimartingales with non-vanishing di�usion component.

The result in (1.2) implies that the high-frequency increments are approx-
imately Gaussian but the key obstacle of testing directly (1.2) is that the
(conditional) variance of the increments, �2

t , is unknown and further is ap-
proximately constant only over a short interval of time. Therefore, on a �rst
step we split the high-frequency increments into blocks (with length that
shrinks asymptotically to zero as we sample more frequently) and form local
estimators of volatility over the blocks. We then scale the high-frequency
increments within each of the blocks by our local estimates of the volatil-
ity. This makes the scaled high-frequency increments approximately i.i.d.
centered normal random variables with unit variance. To purge further the
e�ect of \big" jumps, we then discard the increments that exceed a time-
varying threshold (that shrinks to zero asymptotically) with time-variation
determined by our estimator of the local volatility. We derive a (functional)
Central Limit Theorem (CLT) for the convergence of the empirical cdf of
the scaled high-frequency increments, not exceeding the threshold, to the
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cdf of a standard normal random variable. The rate of convergence can be
made arbitrary close to

p
n, by appropriately choosing the rate of increase of

the block size, where n is the number of high-frequency observations within
the time interval. This is achieved despite the use of the block estimators
of volatility, each of which can estimate the spot volatility �t at a rate no
faster than n1=4.

We further derive the limit behavior of the empirical cdf described above
in two possible alternatives to the model (1.1). The �rst is the case where
Xt does not contain a di�usive component, i.e., the second term in (1.1) is
absent. Models of these type have received a lot of attention in various �elds,
see e.g., [3, 4], [13], [11] and [22]. The second alternative to (1.1) is the case
in which the Itô semimartingale is distorted with measurement error. In each
of these two cases, the empirical cdf of the scaled high-frequency increments
below the threshold converges to a cdf of a distribution di�erent from the
standard normal law. This is the stable distribution in the pure-jump case
and the distribution of the noise in the case of Itô semimartingale observed
with error.

The paper is organized as follows. In Section 2 we introduce the formal
setup and state the assumptions needed for our theoretical results. In Sec-
tion 3 we construct our statistic and in Sections 4 and 5 we derive its limit
behavior. In Section 6 we construct the statistic using alternative local esti-
mator of volatility and derive its limit behavior in the jump-di�usion case.
Section 7 constructs a feasible test for local Gaussianity using our limit the-
ory and in Sections 8 and 9 we apply the test on simulated and real �nancial
data respectively. The proofs are given in Section 10.

2. Setup. We start with the formal setup and assumptions. We will
generalize the setup in (1.1) to accommodate also the alternative hypoth-
esis in which X can be of pure-jump type. Thus, the generalized setup
we consider is the following. The process X is de�ned on a �ltered space
(
;F ; (Ft)t≥0;P) and has the following dynamics

(2.1) dXt = �tdt+ �t−dSt + dYt;

where �t, �t and Yt are processes with c�adl�ag paths adapted to the �ltration
and Yt is of pure-jump type. St is a stable process with a characteristic
function, see e.g., [17], given by
(2.2)

log
[
E(eiuSt)

]
= �tjcuj� (1� isign(u)�) ; � =

{
tan(��=2) if � 6= 1,
� 2
� log juj; if � = 1;
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where � 2 (0; 2] and  2 [�1; 1]. When � = 2 and c = 1=2 in (2.2), we
recover our original jump-di�usion speci�cation in (1.1) in the introduction.
When � < 2, X is of pure-jump type. Yt in (2.1) will play the role of a
\residual" jump component at high frequencies (see assumption A2 below).
We note that Yt can have dependence with St (and �t and �t), and thus Xt

does not \inherit" the tail properties of the stable process St, e.g., Xt can
be driven by a tempered stable process whose tail behavior is very di�erent
from that of the stable process.

Throughout the paper we will be interested in the process X over an
interval of �xed length and hence without loss of generality we will �x this
interval to be [0; 1]. We collect our basic assumption on the components in
X next.
Assumption A. Xt satisfies (2.1).
A1. j�tj−1 and j�t−j−1 are strictly positive on [0; 1]. Further, there is a
sequence of stopping times Tp increasing to infinity and for each p a bounded

process �
(p)
t satisfying t < Tp =) �t = �

(p)
t and a positive constant Kp

such that

E
(
j�(p)
t � �(p)

s j2jFs
)
� Kpjt� sj; for every 0 � s � t � 1:(2.3)

A2. There is a sequence of stopping times Tp increasing to infinity and for

each p a process Y
(p)
t satisfying t < Tp =) Yt = Y

(p)
t and a positive

constant Kp such that

E
(
jY (p)
t � Y (p)

s jqjFs
)
� Kpjt� sj; for every 0 � s � t � 1;(2.4)

and for every q 2 (�′; 2) where �′ < �.
The assumption in (2.3) can be easily veri�ed for Itô semimartingales

which is the typical way of modeling �t, but it is also satis�ed for models
outside of this class. The condition in (2.4) can be easily veri�ed for pure-
jump Itô semimartingales, see e.g., Corollary 2.1.9 of [9].
Remark 1. Our setup in (2.1) (together with assumption A) includes the
more parsimonious pure-jump models for X of the form

∫ t
0 �s−dLs and LTt

where Tt is absolute continuous time-change process and Lt is a Lévy process

with no diffusion component and Lévy density of the form
A+1{x>0}+A−1{x<0}

|x|1+� +

� ′(x) for j� ′(x)j � K
|x|1+�′ when jxj < x0 for some x0 > 0 (and assumptions

for �t and the density of the time change as in A1 above). We refer to [19]
and its supplementary appendix where this is shown.
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Under assumption A, we can extend the local Gaussianity result in (1.2)
to

(2.5) h−1=�(Xt+sh �Xt)
L�! �t � (S′t+s � S′t); as h! 0 and s 2 [0; 1];

for every t and where S′t is a L�evy process identically distributed to St and
the convergence in (2.5) being for the Skorokhod topology, see e.g., Lemma
1 of [19]. That is, the local behavior of the increments of the process is like
that of a stable process in the more general setting of (2.1).

For deriving the CLT for our statistic (in the case of the jump-di�usion
model in (1.1)), we need a stronger assumption which we state next.
Assumption B. Xt satisfies (2.1) with � = 2, i.e., St = Wt.
B1. The process Yt is of the form

(2.6) Yt =

∫ t

0

∫
E
�Y (s; x)�(ds; dx);

where � is Poisson measure on R+�E with Lévy measure �(dx) and �Y (t; x)
is some predictable function on 
� R+ � E.
B2. j�tj−1 and j�t−j−1 are strictly positive on [0; 1]. Further, �t is an Itô
semimartingale having the following representation

(2.7) �t = �0+

∫ t

0
�̃udu+

∫ t

0
�̃udWu+

∫ t

0
�̃′udW

′
u+

∫ t

0

∫
E
��(s; x)�(ds; dx);

where W ′t is a Brownian motion independent from Wt; �̃t, �̃t and �̃′t are
processes with càdlàg paths and ��(t; x) is a predictable function on 
 �
R+ � E.
B3. �̃t and �̃′t are Itô semimartingales with coefficients with càdlàg paths
and further jumps being integrals of some predictable functions, ��̃ and ��̃

′
,

with respect to the jump measure �.
B4. There is a sequence of stopping times Tp increasing to infinity and for
each p a deterministic nonnegative function p(x) on E, satisfying �(x :
p(x) 6= 0) <1 and such that j�Y (t; x)j ^ 1 + j��(t; x)j ^ 1 + j��̃(t; x)j ^ 1 +
j��̃′(t; x)j ^ 1 � p(x) for t � Tp.

The Itô semimartingale restriction on �t (and its coe�cients) is satis�ed
in most applications. Similarly, we allow for general time-dependence in
the jumps in X which encompasses most cases in the literature. B4 is the
strongest assumption and it requires the jumps to be of �nite activity.

3. Empirical CDF of the \Devolatilized" High Frequency In-
crements. Throughout the paper we assume that X is observed on the





EMPIRICAL CDF OF SCALED INCREMENTS OF ITÔ SEMIMARTINGALES 7

V̂ n
j to exclude the contribution of that increment in its formation

(3.3) V̂ nj (i) =


kn�1
kn�3 V̂

n
j � �

2
n

kn�3 j�
n
i Xjj�n

i+1Xj; for i = (j � 1)kn + 1;
kn�1
kn�3 V̂

n
j � �

2
n

kn�3

(
j�n

i�1Xjj�n
i Xj+ j�n

i Xjj�n
i+1Xj

)
;

for i = (j � 1)kn + 2; :::; jkn � 1;
kn�1
kn�3 V̂

n
j � �

2
n

kn�3 j�
n
i�1Xjj�n

i Xj; for i = jkn � 1:

With this, we de�ne
(3.4)

F̂n(�) =
1

Nn(�;$)

bn=knc∑
j=1

(j�1)kn+mn∑
i=(j�1)kn+1

1


p
n�n

i X√
V̂ nj (i)

� �

 1{
j�n
i Xj��

√
V̂ nj n

�$
};

which is simply the empirical cdf of the \devolatilized" increments that do
not contain \big" jumps. In the jump-di�usion case of (1.1), F̂n(�) should
be approximately the cdf of a standard normal random variable.

We note that all the results that follow for F̂n(�) will continue to hold if
we do not truncate for the jumps in the construction of F̂n(�). The intuition
for this is easiest to form in the case when X is a L�evy process without

drift from the following E
∣∣∣1{√n∆n

i X≤�} � 1{
√
n�∆n

i W≤�}

∣∣∣ = O(n�
′=2−1+�) for

�′ the constant of assumption A2 and � > 0 arbitrary small. Our rational
for looking at the truncated increments only is that the order of magnitude
of the above di�erence, i.e., the error due to the presence of jumps in X,
can be slightly reduced by using truncation.

The construction of our statistic resembles the practice of standardizing
increments of the process of �xed length by a measure for volatility con-
structed from high-frequency data within the interval (after correcting for
jumps and leverage e�ect), see e.g. [2]. The main di�erence is that here the
length of the increments that are standardized is shrinking and further the
volatility estimator is local, i.e., over a shrinking time interval. Both these
di�erences are crucial for deriving our feasible limit theory for F̂n(�).

4. Convergence in probability of F̂n(τ ). We next derive the limit
behavior of F̂n(�) both under the null of model (1.1) as well as under a set
of alternatives. We start with the case when Xt is given by (2.1).

Theorem 1. Suppose assumption A holds and assume the block size
grows at the rate

(4.1) kn � nq; for some q 2 (0; 1);

and mn !1 as n!1. Then if � 2 (1; 2], we have

(4.2) F̂n(�)
P�! F�(�); as n!1;
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where we denote � =
√

�
2

√
E
(
j� i
n
� � i−1

n
jj� i−1

n
� � i−2

n
j
)

. Then

(4.4) F̂n(�)
P�! F�(�); as n!1;

where the above convergence is uniform in � over compact subsets of R.

Remark 3. When X is observed with noise, the noise becomes the leading
component at high-frequencies. Hence, our statistic recovers the cdf of the
(appropriately scaled) noise component. Similar to the pure-jump alterna-
tive of St with � < 2, here

p
n is not the right scaling for the increments

�n
i X
∗ but this is offset in the ratio in F̂n(�) by a scaling factor for the local

variance estimator V̂ n
j that makes it non-degenerate. Unlike the pure-jump

alternative, in the presence of noise the correct scaling of the numerator and
the denominator in the ratio in F̂n(�) is given by

(4.5)

p
n�n

i X
∗√

V̂ n
j (i)

=
�n
i X
∗√

n−1V̂ n
j (i)

;

that is, we need to scale down V̂ n
j (i) to ensure it converges to non-degenerate

limit.
The limit result in (4.4) provides an important insight into the noise by

studying its distribution. We stress the fact that the presence of V̂ n
j in the

truncation is very important for the limit result in (4.4). This is because it
ensures that the threshold is \su�ciently" big so that it does not matter in
the asymptotic limit. If, on the other hand, the threshold did not contain
V̂ n
j (i.e., V̂ n

j was replaced by 1 in the threshold), then in this case the limit
will be determined by the behavior of the density of the noise around zero.

We �nally note that when � i
n

is normally distributed, a case that has

received a lot of attention in the literature, the limiting cdf F�(�) is that of
a centered normal but with variance that is below 1. Therefore, in this case
F�(�) will be below the cdf of a standard normal variable, �(�), when � < 0
and the same relationship will apply to 1�F�(�) and 1��(�) when � > 0.

On a more general level, the above results show that the empirical cdf
estimator F̂n(�) can shed light on the potential sources of violation of the
local Gaussianity of high-frequency data. It similarly can provide insights
on the performance of various estimators that depend on this hypothesis.

5. CLT of F̂n(τ ) under Local Gaussianity.
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Theorem 3. Let Xt satisfy (2.1) with St being a Brownian motion and
assume that assumption B holds. Further, let the block size grow at the rate

(5.1)
mn

kn
! 0; kn � nq; for some q 2 (0; 1=2), when n!1;

such that k3
n

nmn
! � � 0. We then have locally uniformly in subsets of R

F̂n(�)� �(�) = Ẑn1 (�) + Ẑn2 (�) +
1

kn

�2�
00
(�)� ��0(�)

8

((�
2

)2

+ � � 3

)
+ op

(
1

kn

)
;

(5.2)

(5.3)
(√
bn=kncmnẐ

n
1 (�)

√
bn=kncknẐn2 (�)

)
L�! (Z1(�) Z2(�)) ;

where �(�) is the cdf of a standard normal variable and Z1(�) and Z2(�)
are two independent Gaussian processes with covariance functions

Cov (Z1(�1); Z1(�2)) = �(�1 ^ �2)� �(�1)�(�2);

Cov (Z2(�1); Z2(�2)) =

[
�1�0(�1)

2

�2�0(�2)

2

]((�
2

)2

+ � � 3

)
; �1; �2 2 R:

(5.4)

Due to the \big" jumps, we derive the CLT only on compact sets of �
since the error in the estimation of the cdf for � ! �1 is a�ected by the
truncation.

We make several observations regarding the limiting result in (5.2)-(5.4).
The �rst term of F̂n(�)��(�) in (5.2), Ẑn1 (�), converges to Z1(�) which is the
standard Brownian bridge appearing in the Donsker theorem for empirical
processes, see e.g., [21]. The second and third term on the right-hand side
of (5.2) are due to the estimation error in recovering the local variance,
i.e., the presence of V̂ n

j in F̂n(�) instead of the true (unobserved) �2
t . Ẑ

n
2 (�)

converges to a centered Gaussian process, independent from Z1(�), while the
third term on the right-hand side of (5.2) is an asymptotic bias. Importantly,
the asymptotic bias as well as the variance of (Z1(�) Z2(�)) are all constants
that depend only on � and not the stochastic volatility �t. Therefore, feasible
inference based on (5.2) is straightforward.

We note that by picking the rate of growth of mn and kn arbitrary close top
n, we can make the rate of convergence of F̂n(�) arbitrary close to

p
n. We

should further point out that this is unlike the rate of estimating the spot
�2
t by V̂ n

j (with the same choice of kn) which is at most n1=4. The reason for
the better rate of convergence of our estimator is in the integration of the
error due to the estimation V̂ n

j .
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The order of magnitude of the three components on the right-hand side
of (5.2) are di�erent with the second term always dominated by the other
two. Its presence should provide a better �nite-sample performance of a test
based on (5.2).

Finally, we point out that a feasible CLT for F̂n(�) is available with \only"
arbitrarily close to

p
n rate of convergence and not exactly

p
n. This is due

to the presence of the drift term in X. The latter leads to asymptotic bias
which is of order 1=

p
n and removing it via de-biasing is in general impossible

as we cannot estimate the latter from high-frequency record of X.

6. Empirical CDF of \Devolatilized" High Frequency Increments
with an Alternative Volatility Estimator. As mentioned in Section 3,
an alternative estimator of the volatility is the Truncated Variation of [12]
de�ned as

(6.1) Ĉnj =
n

kn

jkn∑
i=(j−1)kn+1

j�n
i Xj21

(
j�n

i Xj � �n−$
)
; j = 1; :::; bn=knc;

where � > 0 and $ 2 (0; 1=2) and the corresponding one excluding the
contribution of the i-th increment, for i = (j � 1)kn + 1; :::; jkn, is

(6.2) Ĉnj (i) =
kn

kn � 1
Ĉnj �

n

kn � 1
j�n

i Xj21
(
j�n

i Xj � �n−$
)
:

We de�ne the corresponding empirical cdf of the \devolatilized" (and trun-
cated) high-frequency increments as
(6.3)

F̂ ′n(�) =
1

N ′n(�;$)

bn=knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1


p
n�n

i X√
Ĉnj (i)

� �

 1f|∆n
i X|≤�n−$g;

where for � > 0 and $ 2 (0; 1=2)

(6.4) N
′n(�;$) =

bn=knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1
(
j�n

i Xj � �n−$
)
:

In the next theorem we derive a CLT for F̂ ′n(�) when X is a jump-di�usion.

Theorem 4. Let Xt satisfy (2.1) with St being a Brownian motion and
assume that assumption B holds. Let kn and mn satisfy (5.1). We then have
locally uniformly in subsets of R

F̂ 0n(�)� �(�) = Ẑn1 (�) + Ẑn2 (�) +
1

kn

�2�
00
(�)� ��0(�)

4
+ op

(
1

kn

)
;(6.5)
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(6.6)
(√
b
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with Z1(�) and Z2(�) being the Gaussian processes de�ned in Theorem 3.
We can easily evaluate qn(�;A) via simulation.

We note that in (7.1) we use Nn(�;$) as a normalizing constant. This

is justi�ed because we have Nn(�;$)
bn=kncmn

P�! 1, both in the jump-di�usion
case as well as in the two alternative scenarios considered in Section 4. The
choice of kn and mn in general should be dictated by how much volatility of
volatility in X we have. We illustrate this in the next section.

The test in (7.1) resembles a Kolmogorov-Smirnov type test for equality of
continuous one-dimensional distributions. There are two di�erences between
our test and the original Kolmogorov-Smirnov test. First, in our test we scale
the high-frequency increments by a nonparametric local estimator of the
volatility and this has an asymptotic e�ect on the test statistic, as evident
from Theorem 3. The second di�erence is in the region A over which the
di�erence F̂n(�)��(�) is evaluated. For reasons we already discussed, that
are particular to our problem here, we need to exclude arbitrary high in
magnitude values of � .

Now, in terms of the size and power of the test, under assumptions A and
B, using Theorem 1 and Theorem 3, we have

(7.3) lim
n

P (Cn) = �; if � = 2 and lim inf
n

P (Cn) = 1; if � 2 (1; 2);

where we make also use of the fact that the stable and standard normal
variables have di�erent cdf-s on compact subsets of R with positive Lebesgue
measure. By Theorem 2, the above power result applies also to the case when
we observe X i

n
+ � i

n
, provided of course the limiting cdf of the noise in (4.4)

di�ers from that of the standard normal on the set A.
We note that existing tests for presence of di�usive component in X are

based only on the scaling factor of the high-frequency increments on the left
side of (2.5). However, the limiting result in (2.5) implies much more. Mainly,
the distribution of the \devolatilized" increments should be stable (and in
particular normal in the jump-di�usion case). Our test in (7.1), unlike earlier
work, incorporates this distribution implication of (2.5) as well.

We �nally point out that using Theorem 3, one should be able to derive
alternative tests for the presence of di�usive component in X, by adopting
other measures of discrepancy between distributions like the Cramer-von
Mises one.

8. Monte Carlo. We now evaluate the performance of our test on sim-
ulated data. We consider the following two models. The �rst is

(8.1) dXt =
√
VtdWt+

∫
R
x�(ds; dx); dVt = 0:03(1:0�Vt)dt+0:1

√
VtdBt;
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where (Wt; Bt) is a vector of Brownian motions with Corr(Wt; Bt) = �0:5
and � is a homogenous Poisson measure with compensator �(dt; dx) = dt

0:25e−|x|=0:4472

0:4472 dx which corresponds to double exponential jump process with
intensity of 0:5 (i.e., a jump every second day on average). This model is
calibrated to �nancial data by setting the means of continuous and jump
variation similar to those found in earlier empirical work. Similarly, we allow
for dependence between Xt and Vt, i.e., leverage e�ect. The second model is
given by

(8.2) Xt = STt ; with Tt =

∫ t

0
Vsds;

where St is a symmetric tempered stable martingale with L�evy measure
0:1089e−|x|

|x|1+1:8 and Vt is the square-root di�usion given in (8.1). The process

in (8.2) is a time-changed tempered stable process. The parameters of St
are chosen such that it behaves locally like 1:8-stable process and it has
variance at time 1 equal to 1 (as the model in (8.1)). For this process the
local Gaussianity does not hold and hence the behavior of the test on data
from the model in (8.2) will allow us to investigate the power of the test.
We also consider another alternative to the jump-di�usion, mainly the case
when the process in (8.2) is contaminated with i.i.d. Gaussian noise. The
variance of the noise is set to 0:01 consistent with empirical evidence in [8].

We turn next to the implementation of the test. We apply the test on one
year worth of simulated data which consists of 252 days (our unit of time
is one trading day). We consider two sampling frequencies: n = 100 and
n = 200 which correspond to sampling every 5 and 2 minutes respectively
in a typical trading day. We experiment with 1-4 blocks per day. In each
block we use 75% or 70% of the increments in the formation of the test, i.e.,
we set bmn=knc = 0:75 for n = 100 and bmn=knc = 0:70 for n = 200. We
found very little sensitivity of the test with respect to the choice of the ratio
mn=kn. For the truncation of the increments, as typical in the literature,
we set � = 3:0 and $ = 0:49. Finally, the set A over which the di�erence
F̂n(�)� F (�) in our test is evaluated is set to

(8.3) A = [Q(0:01) : Q(0:40)] [ [Q(0:60) : Q(0:99)];

where Q(�) is the �-quantile of standard normal.
The results of the Monte Carlo are reported in Tables 1-3. For the smaller

sample size, n = 100, and with no blocking at all (kn = n) to account for
volatility movements over the day, there are size distortions most noticeable
at the conventional 5 percent level. With three blocks (bn=knc = 3), size is
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appropriate, while it is seen to have excellent power in Tables 2 and 3. But
with four blocks on n = 100, there are size distortions because the noisy
estimates of local volatility distort the test. Considering the larger sample
size (n = 200), now with three or four blocks the test’s size is approxi-
mately correct while power is excellent. For larger values of kn relative to
n (bn=knc = 1) the time variation in volatility over the day coupled with
the relatively high precision of estimating a biased version of local volatility,
leads to departures from Gaussianity of the (small) scaled increments and
hence the over-rejections.

In Tables 1-3 we also report the performance on the simulated data of a
test for presence of Brownian motion in high frequency data based on (trun-
cated) power variations computed on two di�erent frequencies, proposed in
[1] (see also [18]). This test, unlike the test proposed here, does not exploit
the distributional implication of the local Gaussianity result in (1.2). We can
see from Table 1 that the test based on the power variations has reasonable
behavior under the null of presence of a di�usion component in X. Table 2
further shows that for the optimal choice of the power (p = 1), the test has
slightly lower power against the considered pure-jump alternative in (8.2)
than the Kolmogorov-Smirnov test (when block size is chosen optimally).

When the pure-jump model is contaminated with noise, the scaling of
the power variations is similar (for the considered frequencies) to that of
a jump-di�usion model observed without noise. Hence, Table 3 reveals rel-
atively low power of the test based on the power variations against the
alternative of pure-jump process contaminated with noise. By contrast, the
Kolmogorov-Smirnov test shows almost no change in performance compared
with the alternative when the pure-jump process is observed without noise
(Table 2). The reason is that the Kolmogorov-Smirnov test incorporates also
the distributional implications of (1.2) and, under the pure-jump plus noise
scenario, the scaled high-frequency increments have a distribution which is
very di�erent from standard normal.

9. Empirical Illustration. We now apply our test to two di�erent
�nancial assets, the IBM stock price and the VIX volatility index. The an-
alyzed period is 2003 � 2008 and like in the Monte Carlo we consider two
and �ve minute sampling frequencies. The test is performed for each of the
years in the sample. We set A as in (8.3) and bn=knc = 3 for the �ve-minute
sampling frequency and bn=knc = 4 for the two-minute frequency. As in the
Monte Carlo, the ratio bmn=knc is set to 0:75 and 0:70 for the �ve-minute
and two-minute respectively sampling frequencies. Finally, to account for
the well-known diurnal pattern in volatility we standardize the raw high-
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Table 1
Monte Carlo Results for Jump-Di�usion Model (8.1)

Kolmogorov-Smirnov Test Power Variation based Test

Nominal Size Rejection Rate

Sampling Frequency n = 100

kn = 25 kn = 33 kn = 100 p = 1:0 p = 1:5

� = 1% 1:0 1:4 6:1 1:5 0:7
� = 5% 13:6 5:4 20:8 7:7 5:4

Sampling Frequency n = 200

kn = 50 kn = 67 kn = 200 p = 1:0 p = 1:5

� = 1% 1:7 2:2 10:6 1:4 1:3
� = 5% 6:1 6:9 35:2 8:1 6:7

Note: For the cases with n = 100 we set bmn=knc = 0:75 and for the cases with n = 200
we set bmn=knc = 0:70. The power variation test is a one-sided test based on Theorem 2
in [1] with
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Table 2
Monte Carlo Results for Pure-Jump Model (8.2)

Kolmogorov-Smirnov Test Power Variation based Test

Nominal Size Rejection Rate

Sampling Frequency n = 100

kn = 25 kn = 33 kn = 100 p = 1:0 p = 1:5

� = 1% 63:3 86:8 99:9 71:1 14:2
� = 5% 92:8 99:1 100:0 91:3 38:4

Sampling Frequency n = 200

kn = 50 kn = 67 kn = 200

� = 1% 100:0 100:0 100:0 97:7 32:1
� = 5% 100:0 100:0 100:0 99:4 63:3

Note: Notation as in Table 1.

Ṽ nj =
n

kn � 1

�

2

jkn∑
i=(j�1)kn+2

j�n
i�1Bjj�n

i Bj; V
n

j = �2
(j�1)kn

n

n

kn � 1

�

2

jkn∑
i=(j�1)kn+2

j�n
i�1Sjj�n

i Sj;

and we de�ne _V n
j (i), Ṽ n

j (i) and V
n
j (i) from the above as in (3.3). We also

denote

(10.1) F̃n(�) =
Nn(�;$)

bn=kncmn
F̂n(�):

Finally, in the proofs we will denote with K a positive constant that might
change from line to line but importantly does not depend on n and � . We

will also use the shorthand notation Eni (�) = E
(
�jF (i−1)

n

)
.

10.1. Localization. We will prove Theorems 1-4 under the following stronger
versions of assumption A and B:
SA. We have assumption A with �t, �t and �−1

t being all uniformly bounded
on [0; 1]. Further, (2.3) and (2.4) hold for �t and Yt respectively.
SB. We have assumption B with all processes �t, �̃t, �t, �

−1
t , �̃t, �̃

′
t and

the coefficients of the Itô semimartingale representations of �̃t and �̃′t be-
ing uniformly bounded on [0; 1]. Further (j�Y (t; x)j+ j��(t; x)j+ j��̃(t; x)j+
j��̃′(t; x)j) � (x) for some non-negative valued function (x) on E satisfy-
ing

∫
E �(x : (x) = 0)dx <1 and (x) � K for some constant K.

Extending the proofs to the weaker assumptions A and B follows by stan-
dard localization techniques exactly as Lemma 4.4.9 of [9].
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Table 3
Monte Carlo Results for Pure-Jump Model (8.2) plus Noise

Kolmogorov-Smirnov Test Power Variation based Test

Nominal Size Rejection Rate

Sampling Frequency n = 100

kn = 25 kn = 33 kn = 100 p = 1:0 p = 1:5

� = 1% 57:1 83:4 99:9 21:7 1:6
� = 5% 91:2 97:8 100:0 46:2 5:9

Sampling Frequency n = 200

kn = 50 kn = 67 kn = 200

� = 1% 100:0 100:0 100:0 6:5 0:0
� = 5% 100:0 100:0 100:0 17:3 0:0

Note: Notation as in Table 1.

10.2. Proof of Theorem 1. Without loss of generality, we will assume
that � < 0, the case � � 0 being dealt with analogously (by working with
1� F̂n(�) instead). We �rst analyze the behavior of V̂ n

j . We denote with �n
a deterministic sequence that depends only on n and vanishes as n!1.

Using the triangular inequality, the Chebyshev inequality, successive con-
ditioning, as well as H�older inequality and assumption SA, we get for j =
1; :::; bn=knc

P
(
n2=�−1jV̂ n

j � _V n
j j � �n

)
� Kn1=�−(1=�′)∧1+�

�n
; 8� > 0:

Similarly, using triangular inequality, Chebyshev inequality as well as H�older
inequality, we get for j = 1; :::; bn=knc

P
(
n2=�−1j _V n

j � Ṽ n
j j � �n

)
� Kn1=�−1+�

�n
; 8� > 0:

Next, using, triangular inequality, Chebyshev inequality, H�older inequality,
Burkholder-Davis-Gundy inequality as well as assumption SA, we get for
j = 1; :::; bn=knc

P
(
n2=�−1jṼ n

j � V
n
j j � �n

)
� K k

1=2−�
n

n1=2−��n
; 8� > 0:

Finally, using the self-similarity of the stable process and Burkholder-Davis-
Gundy inequality (for discrete martingales), we get for j = 1; :::; bn=knc

P
(
jn2=�−1V

n
j �

�

2
�2

(j−1)kn
n

(EjS1j)2j � �n
)
� K 1

k�−1−�
n ��−�n

; 8� 2 (0; 1��):
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Fig 1. Kolmogorov-Smirnov tests for local Gaussianity. The � corresponds to the value
of the test sup�∈A

√
Nn(�;$)jF̂n(�) � F (�)j and the solid lines are the critical values

qn(�;A) for � = 5% and � = 1%.

Combining these results, we get altogether for 8� 2 (0; 1� �)

P
(
jn2=�−1V̂ n

j �
�

2
�2

(j−1)kn
n

(EjS1j)2j � �n
)

� K

(
n1=�−(1=�′)∧1+�

�n

∨ k
1=2−�
n

n1=2−��n

∨ 1

k�−1−�
n ��−�n

)
:

(10.2)

Using the same proofs we can show that the result above continues to hold
when V̂ n

j is replaced with V̂ n
j (i).

Next, for i = (j � 1)kn + 1:::; (j � 1)kn + mn and j = 1; :::; bn=knc, we
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denote �ni;j(1) = n1=�
(

�n
i A+ �n

i Y +
∫ i∆n

(i−1)∆n
(�u− � � (j−1)kn

n

)dSu

)
�ni;j(2) = n1=�� (j−1)kn

n

�n
i S1{

|∆n
i X|>�

√
V̂ nj n

−$
} :

With this notation, using similar inequalities as before, we get

(10.3) P
(
j�ni;j(1)j � �n

)
� K

(
n1=�−(1=�′)∧1+�

�n

∨ k
�=2+�=2
n

n�=2+�=2��+�
n

)
:

Next, using the result in (10.2) above as well as H�older inequality, we get
(10.4)

P
(
j�ni;j(2)j � �n

)
� Kn�(1=2�$)�+� _ n1=��(1=�0)^1+� _ (kn=n)1=2�� _ k1+���

n

��n
; 8� > 0:

We next denote the set (note that by assumption SA, �t is strictly above
zero on the time interval [0; 1])
(10.5)

Ani;j =

! :
j�ni;j(1)j+ j�ni;j(2)j√

�
2EjS1j

> �n [

∣∣∣∣∣∣
n1=�−1=2

√
V̂ n
j (i)√

�
2� (j−1)kn

n

EjS1j
� 1

∣∣∣∣∣∣ > �n

 ;

for i = (j � 1)kn + 1; :::; (j � 1)kn +mn and j = 1; :::; bn=knc.
We now can set (recall (4.1))

(10.6) �n = n−x; 0 < x <

[(
1

�′
^ 1� 1

�

)∧ 1� q
2

∧ q(� � 1)

�

]
;

and this choice is possible because of the restriction on the rate of increase
of the block size kn relative to n given in (4.1). With this choice of �n, the
results in (10.2), (10.3) and (10.4) imply

(10.7)
1

bn=kncmn

bn=knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

P
(
Ani;j

)
= o(1):

Therefore, for any compact subset A of (�1; 0),

(10.8) sup
�∈A
jF̃n(�)� Ĝn(�)j = op(1);

where we denote

Ĝn(�) =
1

bn=kncmn

bn=knc∑
j=1

(j�1)kn+mn∑
i=(j�1)kn+1

1


p
n�n

i X√
V̂ nj (i)

1{
j�n
i Xj��

√
V̂ nj n

�$
} � �

 1f(Ani;j)cg:
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Taking into account the de�nition of the set Ani;j , we get
Ĝn(�) � 1

bn=kncmn
∑bn=knc

j=1

∑(j−1)kn+mn
i=(j−1)kn+1 1

{
n1=�∆n

i Sp
�
2
E|S1|

� �(1� �n)� �n
}
;

Ĝn(�) � 1
bn=kncmn

∑bn=knc
j=1

∑(j−1)kn+mn
i=(j−1)kn+1 1

{
n1=�∆n

i Sp
�
2
E|S1|

� �(1 + �n) + �n

}
:

Using Glivenko-Cantelli theorem, see e.g., Theorem 19.1 of [21], we have

sup
�

∣∣∣∣ 1

bn=kncmn

bn=knc∑
j=1

(j�1)kn+mn∑
i=(j�1)kn+1

1

{
n1=��n

i S√
�
2EjS1j

� �(1� �n)� �n

}

� F�(�(1� �n)� �n)

∣∣∣∣ P�! 0;

sup
�

∣∣∣∣ 1

bn=kncmn

bn=knc∑
j=1

(j�1)kn+mn∑
i=(j�1)kn+1

1

{
n1=��n

i S√
�
2EjS1j

� �(1 + �n) + �n

}

� F�(�(1 + �n) + �n

∣∣∣∣ P�! 0;

and further using the smoothness of cdf of the stable distribution we have

sup
�
jF�(�(1� �n)� �n)� F�(�)j �! 0; sup

�
jF�(�(1 + �n) + �n)� F�(�)j �! 0:

These two results altogether imply

sup
�
jĜn(�)� F�(�)j P�! 0;

and from here, using (10.8), we have sup�∈A jF̃n(�)�F�(�)j = op(1) for any
compact subset A of (�1; 0). Hence, to prove (4.2), we need only to show

(10.9)
Nn(�;$)

bn=kncmn

P�! 1; as n!1:

We have

P
(
j�n

i Xj > �
√
V̂ nj n

�$
)
� P

∣∣∣∣∣∣
n1=��1=2

√
V̂ nj√

�
2� (j
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10.3. Proof of Theorem 2. The proof follows the same steps as that of
Theorem 1. We denote with �n a deterministic sequence depending only on
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only show Nn(�;$)
bn=kncmn

P�! 1 as n!1. This follows from

P
(
j�n

i X
∗j > �

√
V̂ n
j n
−$
)
� P

∣∣∣∣∣∣
√
V̂ n
jp
n�

∣∣∣∣∣∣ > 0:5

+ P
(
j�n

i X
∗j > 0:5��n1=2−$

)
� K

n�
; for some su�ciently small � > 0;

which can be shown using (10.11), the fact that the noise term has a �nite
�rst moment and the Burkholder-Davis-Gundy inequality. 2

10.4. Proof of Theorem 3. As in the proof of Theorem 1, without loss of
generality we will assume � < 0. First, given the fact that mn=kn ! 0, it is
no limitation to assume kn �mn > 2 and we will do so henceforth. Here we
need to make some additional decomposition of the di�erence Ṽ n

j � V
n
j . It

is given by the following

(10.13) Ṽ n
j � V

n
j = R

(1)
j +R

(2)
j +R

(3)
j +R

(4)
j ; j = 1; ::::; bn=knc;

R
(1)
j =

n

kn � 1

�

2

jkn∑
i=(j�1)kn+2

[(
j�n

i�1Bjj�n
i Bj � �2

(i�2)�n
j�n

i�1W jj�n
iW j

)
+ (�(i�2)�n

� � (j�1)kn
n

)2j�n
i�1W jj�n

iW j
]
;

R
(2)
j = 2

n

kn � 1

�

2
� (j�1)kn

n

jkn∑
i=(j�1)kn+2

[
�(i�2)�n

� � (j�1)kn
n
�
∫ i�2

n

(j�1)kn
n

�̃ (j�1)kn
n

dWu

�
∫ i�2

n

(j�1)kn
n

�̃0(j�1)kn
n

dW 0u

]
j�n

i�1W jj�n
iW j;

R
(3)
j =

2

kn � 1

�

2
� (j�1)kn

n

jkn∑
i=(j�1)kn+2

[ ∫ i�2
n

(j�1)kn
n

�̃ (j�1)kn
n

dWu +

∫ i�2
n

(j�1)kn
n

�̃0(j�1)kn
n

dW 0u

]

�
(
nj�n

i�1W jj�n
iW j �

2

�

)
;

R
(4)
j =

2

kn � 1
� (j�1)kn

n

jkn∑
i=(j�1)kn+2

[ ∫ i�2
n

(j�1)kn
n

�̃ (j�1)kn
n

dWu +

∫ i�2
n

(j�1)kn
n

�̃0(j�1)kn
n

dW 0u

]
:

For i = (j � 1)kn + 1; ::::; jkn � 2 we denote the component of R
(4)
j that

does not contain the increments �n
iW and �n

iW
′ with

R̃
(4)
i;j = R

(4)
j �

2

kn � 1
� (j�1)kn

n
(jkn� i� 1)

[ ∫ i
n

i�1
n

�̃ (j�1)kn
n

dWu +

∫ i
n

i�1
n

�̃0(j�1)kn
n

dW 0u

]
:
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We decompose analogously the di�erence Ṽ n
j (i) � V

n
j (i) into R

(k)
j (i) for

k = 1; ::; 4 and R̃
(4)
i;j (i) is the component of R

(4)
j (i) that does not contain the

increments �n
iW and �n

iW
′. We further denote for i = (j�1)kn+1; ::::; (j�

1)kn +mn and j = 1; :::; bn=knc,

�nj (1) =
V̂ nj (i)� �2

(j�1)kn
n

2�2
(j�1)kn

n

; �nj (2) =

(
V̂ nj (i)� �2

(j�1)kn
n

)2

8�4
(j�1)kn

n

;

�̃ni;j(1) =
V
n

j (i) + R̃
(4)
i;j (i)� �2

(j�1)kn
n

2�2
(j�1)kn

n

; �̃ni;j(2) =

(
V
n

j (i) + R̃
(4)
i;j (i)� �2

(j�1)kn
n

)2

8�4
(j�1)kn

n

;

�
n

j (1) =
V
n

j +R
(4)
j � �2

(j�1)kn
n

2�2
(j�1)kn

n

; �
n

j (2) =

(
V
n

j +R
(4)
j � �2

(j�1)kn
n

)2

8�4
(j�1)kn

n

;

�̂nj (1) =
V
n

j � �2
(j�1)kn

n

2�2
(j�1)kn

n

; �̂nj (2) =

(
V
n

j � �2
(j�1)kn

n

)2

8�4
(j�1)kn

n

;

�ni;j(3) =

p
n�n

iW

� (j�1)kn
n

[
�̃ (j�1)kn

n
(W i�1

n
�W (j�1)kn

n
) + �̃0(j�1)kn

n

(W 0i�1
n

�W 0(j�1)kn
n

)
]
;

�ni;j(4) = 1 +
1

� (j�1)kn
n

[
�̃ (j�1)kn

n
(W i�1

n
�W (j�1)kn

n
) + �̃0(j�1)kn

n

(W 0i�1
n

�W 0(j�1)kn
n

)
]
:

With this notation we set for i = (j � 1)kn + 1; ::::; (j � 1)kn + mn and
j = 1; ::::; bn=knc

�ni;j(1) = �
p
n

1

� (j�1)kn
n

(
�n
i A+ �n

i Y +

∫ i
n

i�1
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(
�u � � i�1

n

)
dWu

)
1{
j�n
i Xj��

√
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�$
}

+ (
p
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iW + �ni;j(3))1{
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i Xj>�

√
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�$
}

�

(p
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n
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)
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i Xj��

√
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};

�ni;j(2) =


√
V̂ nj (i)

� (j�1)kn
n

� 1� �nj (1) + �nj (2)

+ (�nj (1)� �nj (2)� �̃ni;j(1) + �̃ni;j(2)):
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Finally, we denote

Ĝn(�) =
1

bn=kncmn

bn=knc∑
j=1

(j�1)kn+mn∑
i=(j�1)kn+1

1

(p
n

�n
i X

� (j�1)kn
n

1{
j�n
i Xj��

√
V̂ nj n
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√
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� (j�1)kn
n

� �ni;j(1)� ��ni;j(2)

)

=
1

bn=kncmn

bn=knc∑
j=1

(j�1)kn+mn∑
i=(j�1)kn+1

1
(p

n�n
iW � � + � �̃ni;j(1)� � �̃ni;j(2)� �ni;j(3)

)
:

The proof consists of three parts: the �rst is showing the negligibility of
kn(F̃n(�)� Ĝn(�)), the second is deriving the limiting behavior of Ĝn(�)�
�(�) and third part is showing negligibility of kn(F̂n(�)� F̃n(�)).

10.4.1. The difference F̃n(�)� Ĝn(�). We �rst collect some preliminary
results that we then make use of in analyzing F̃n(�)� Ĝn(�). We start with
maxi=1;::::;n j�n

i Bj . Using maximal inequality we have

(10.14) E( max
i=1;::::;n

j�n
i Bjp) � Kn1−p=2; 8p > 0:

Next, using assumption SB (in particular that jumps are of �nite activity),
we have

P

(∫ jkn
n

(j−1)kn
n

∫
E

1
(
��(z; x) 6= 0

)
�(dz; dx) � 1

)
� Kkn

n
; � = Y , �, �̃ and �̃′:

(10.15)

We now provide bounds for the elements of �ni;j(1) and �ni;j(2). In what
follows we denote with �n some deterministic sequence of positive numbers
that depends only on n. We �rst have (recall the de�nition of �t)

P

(
p
n

∣∣∣∣∣
∫ i

n

i�1
n
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n

)dWu
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)
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∫
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1
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)
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(
p
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)dWu

∣∣∣∣∣ � �n
)
:

For the second term on the right hand side of the above inequality, we can
use Chebyshev inequality as well as Burkholder-Davis-Gundy inequality, to
get for 8p � 2:

P

(
p
n

∣∣∣∣∣
∫ i
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n

(�u � � i−1
n

)dWu
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:
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Therefore, applying again Burkholder-Davis-Gundy inequality, we have al-
together
(10.16)

P

(
p
n

∣∣∣∣∣
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1
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; 8p > 0:

Similar calculations (using the fact that �̃t and �̃′t are Itô semimartingales),
yields for 8p > 0
(10.17)

P

(∣∣∣∣∣
p
n�n

iW

� (j−1)kn
n

(
� i−1

n
� � (j−1)kn

n

)
� �ni;j(3)

∣∣∣∣∣ � �n
)
� K

[(
kn
n

)∨(
kn
n�n

)p]
:

Next, applying Chebyshev inequality and the elementary j
∑

i jaijjp �
∑

i jaijp
for p 2 (0; 1], we get

P
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(10.18)

Further, Chebyshev inequality and the boundedness of at easily implies

(10.19) P
(p
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)
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�pn

� K 1
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:

We turn next to the di�erence V̂ n
j � _V n

j . Using triangular inequality and
successive conditioning, we have

P
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:

From here we have
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Thus altogether we get

(10.20) P
(
jV̂ n
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:

We continue next with the di�erence _V n
j � Ṽ n

j . Application of triangular
inequality gives
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Using this inequality and applying Chebyshev inequality, we get
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)
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(
1p
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)p
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and this inequality can be further strengthened but su�ces for our analysis.

Turning next toR
(1)
j , using triangular inequality, Burkholder-Davis-Gundy

inequality as well as (10.15), we can easily get
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Similar calculations, and utilizing the fact that �̃t �̃
′
t are themselves Itô

semimartingales, yield
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Next, by splitting

nj�n
i�1W jj�n

iW j�
2

�
= j
p
n�n

i�1W j

(
j
p
n�n

iW j �
√

2

�

)
+

√
2

�

(
j
p
n�n

i�1W j �
√

2

�

)
;

we can decomposeR
(3)
j into two discrete martingales. Then applying Burkholder-

Davis-Gundy inequality, we get
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Next, we trivially have

(10.24)


P
(
jV nj � �2

(j�1)kn
n

j � �n
)
� K

(
1

kn�2n

)p
;

P
(
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Further, application of Burkholder-Davis-Gundy inequality gives

(10.25)

 EjV n
j � �2

(j−1)kn
n

jp � K

k
p=2
n

;

En(j−1)kn
(R

(4)
j ) = 0; EjR(4)

j jp � K
(
kn
n

)p=2
; 8p � 2:

The results in (10.20)-(10.25) continue to hold when V̂ n
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Further, using Burkholder-Davis-Gundy inequality for discrete martin-
gales (note that V

n
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j (i) can be decomposed into discrete martingales

and terms whose p-th moment is bounded by K=kpn), we have
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Now we can use the above results for the components of V̂ n
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(10.28)
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for 8p � 1 and 8� > 0. Similarly, using the following inequality
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(10.29)

for every p � 1 and arbitrary small � > 0.
We �nally provide a bound for the second term in � n

i;j (1). We can use
Chebyshev inequality as well as H•older inequality to get
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(10.30)

We can further write
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From here we can use the bounds in (10.20)-(10.27) as well as (10.18) and
conclude
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Combining the results in (10.14), (10.16), (10.17), (10.18), (10.19), (10.28), (10.29)
and (10.31), we get
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