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Abstract

This paper studies the quantitative asset pricing implications of �nancial intermediary which
faces a leverage constraint. I use a recursive method to construct the global solution that
accounts for occasionally binding constraint. Quantitatively, the model generates a high and
countercyclical equity premium, a low and smooth risk-free interest rate, and a procyclical
and persistent variation of price-dividend ratio, despite an independently and identically
distributed consumption growth process and a moderate risk aversion of 10. As a distinct
prediction from the model, when the intermediary is �nancially constrained, interest rate
spread between interbank and household loans spikes. This pattern is consistent with the
empirical evidence that high TED spread coincides with low stock price and high stock market
volatility, which I con�rm in the data.

Keywords: Financial Intermediary, Equity Premium, Return Predictability, TED spread,

Global Method

First Draft: September 2012. This Draft: November 10, 2013.

�Department of Finance, School of Business and Management, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong. Phone: (852)2358-8202; Email: kaili@ust.hk. I am deeply indebted to
Ravi Bansal, Hengjie Ai, Tim Bollerslev, and Mariano Croce for their invaluable guidance and support. I would also
like to thank Ian Dew-Becker, Michael Gallmeyer, Philipp Illeditsch (EFA discussant), Jia Li, Lukas Schmid, James
Speckart, George Tauchen, Christopher Timmins, Harold Zhang (AsianFA discussant) for their helpful comments,
and other seminar participants at Duke Macro Finance Reading Group and Duke Financial Econometrics Lunch
Group, 2013 EFA meeting, 2013 AsianFA Conference, 2013 Asian meeting of Econometric Society. All remaining
errors are my own. The most recent version of this paper can be found at http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=2219200

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2219200
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2219200


1 Introduction

This paper studies the quantitative asset pricing implications of �nancial intermediary1. I embed

a �nancial intermediary sector with a leverage constraint �a la Gertler and Kiyotaki (2010) into an

endowment economy. The model features a calibrated �nancial sector, recursive preferences, and

an independently and identically distributed consumption growth process. The leverage constraint

makes intermediary equity capital (net worth) to be an important state variable that a�ects asset

prices and helps to understand a wide variety of dynamic asset pricing phenomena. Rather than

a log-linear approximation method, I use a global method that allows for occasionally binding

constraint to solve the model, and show the global method is critical for quantifying asset pricing

implications.

Quantitatively, an i.i.d. consumption growth shock, calibrated to match the standard deviation

of the aggregate consumption growth, is ampli�ed and accumulated through the propagation

mechanism of the leverage constraint, and has large and long-lasting e�ects on asset prices, which

are absent in the model without frictions. In particular, the model produces a high equity premium

(in log units) of 4:1%, a signi�cant share (78%) of the equity premium observed in the data, a

low interbank interest rate volatility of 0:58%, consistent with the data (0:55%), and a persistent

and procyclical variation of price-dividend ratio, with �rst order autocorrelation of 65%, relatively

lower than that in the data (89%). The equity premium is strongly countercyclical in the model,

and predictable with the leverage ratio of aggregate �nancial intermediary sector, a pattern I

con�rm in the data. The model also produces an average stock market volatility of 16:5%, only

slightly lower than a volatility of 19:8% in the data.

The leverage constraint e�ectively introduces a wedge between interest rates on interbank and

household loans. As a distinct implication from the model, the loan spread widens signi�cantly in

the credit crunch which features a large drop in intermediary net worth. This patten is consistent

with the evidence that high TED spread2 coincides with low price-dividend ratio and high stock

market volatility, as shown in Figure 1.

I emphasize the importance of using a global method that accounts for occasionally binding

constraint to solve the model. In the benchmark calibration with a moderate risk aversion of 10

and a calibrated �nancial sector, the global solution suggests the constraint only binds for about

1In this paper, the �nancial intermediary sector is meant to capture the entire banking sector, including com-
mercial banks, investment banks as well as hedge funds. Thus, I use \�nancial intermediary sector" and \banking
sector", \�nancial intermediaries" and \banks", interchangeably. For the composition of aggregate �nancial inter-
mediary sector, see Table 1 in Appendix 7.3.

2TED spread is measured by the spread between 3-month LIBOR rate in U.S. dollars and 3-month U.S. gov-
ernment treasury bill rate.
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15% of the time. A third order local approximation method, imposing the assumption that the

constraint is always binding around the steady state, greatly exaggerates the volatilities of asset

prices and equity premium.

There are two main ingredients in the model. First, I build a stylized leverage constraint faced

by �nancial intermediary into an otherwise standard endowment economy. As in Gertler and

Kiyotaki (2010), a limited enforcement argument that �nancial intermediary can divert a fraction

of bank assets and default on deposits provides a microfoundation for the leverage constraint. In

particular, the debt �nancing capacity to an intermediary is proportional to the equity capital of

the intermediary times a leverage multiple. In this setup, the intermediary net worth strongly

a�ects asset prices through an adverse dynamic feedback e�ect: a negative consumption shock

lowers the intermediary net worth, increases the probability that constraint becomes binding in

the future, and therefore reduces the borrowing capacity of the intermediary sector today and in

the future. Lower borrowing capacity results in lower demand for risky assets. In the equilibrium,

the intermediary sector still holds all the risky assets. To clear the market, the asset price has to

fall, and risk premium has to rise. The resulting fall in asset price further lowers the net worth.

An initial small i.i.d. consumption shock is endogenously ampli�ed through this propagation

mechanism.

The leverage constraint also opens up an endogenous channel of countercyclical equity premium

and stock market volatility, even though consumption growth is homoscedastic. The equilibrium

asset prices are more sensitive to the fundamental shocks when the intermediary net worth is low.

As the �nancial intermediary sector becomes more �nancially constrained, both the exposure of

market return to consumption shock (i.e. return beta) and the market price of the consumption

shock increase, and thus contribute to a higher equity premium. In the model, price-dividend ratio

and leverage ratio of the aggregate intermediary sector predict long-horizon equity returns. Both

the slope coe�cients and R2 line up with the data relatively well at all horizons. And the model

also captures the volatility feedback e�ect; that is, a consumption shock, as a negative innovation

to market return, is a positive innovation to return volatility.

As a distinct feature of the model, the leverage constraint introduces a wedge between interest

rates on interbank and household loans. This spread, as a measure of the tightness of leverage

constraint, is countercyclical and widens signi�cantly in bad times when the intermediary sector

is extremely �nancially constrained. I posit a retail interbank market where the banks can trade

Arrow-Debreu securities (in zero net supply) that pay one unit of net worth given a certain state

among themselves frictionlessly (i.e. the bank cannot default on them), assuming the banks have

monitoring technology in evaluating and monitoring their borrowers. Under this asset market
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structure, the banks are unconstrained in choosing risky assets and interbank loans, though they

are constrained agents to obtain debt from the household. The augmented stochastic discount

factor suggested by the bank’s portfolio choice problem price risky assets and interbank risk-free

debt. It depends not only on household consumption, but also on intermediary equity capital. The

banker dislikes assets with low return when aggregate consumption is low, and when his �nancial

intermediary has low net worth. However, the interest rate on household loans is priced by a

di�erent stochastic discount factor, which is suggested by the household optimization problem. In

a credit crunch, modeled as a large drop in intermediary net worth so that the constraint binds,

the banks are strongly liquidity constrained to lend net worth to others, and therefore the market

clearing condition drives up the interbank interest rate.

The second ingredient of the model is that quantitatively I rely on recursive preferences (Kreps

and Porteus, 1978; Epstein and Zin, 1989) which allow for a separation between the intertemporal

elasticity of substitution (IES, hereafter) and risk aversion, and consequently permit both param-

eters to be simultaneously larger than 1. I calibrate the recursive preference with a moderate risk

aversion of 10 and an IES of 1:5, consistent with Bansal and Yaron (2004). In this economy, when

the IES is larger than 1, the level of interest rate on household loans is low, consistent with the

data. Furthermore, a high IES (larger than 1) is also critical to produce high equity premium. In

the CRRA utility case, as the risk aversion increases, the IES, which is the reciprocal of risk aver-

sion, decreases simultaneously, and leads the average leverage ratio of the �nancial intermediary

sector to decrease very rapidly. This signi�cantly lowers the volatility of the stochastic discount

factor, due to lower volatility of shadow price of net worth. In contrast, when the IES is larger than

1, the average leverage ratio of the �nancial sector only decreases slowly with the risk aversion,

therefore, maintains a volatile stochastic discount factor, and thus a high equity premium.

Computationally, I use a recursive method to construct a global solution which accounts for

occasional binding constraint. The theoretical underpinnings of the recursive method are devel-

oped in a companion paper (Ai, Bansal and Li, 2012), while this paper focuses on the economics

and quantitative analysis of the model. In the paper, I emphasize the importance of allowing

for occasional binding constraint on quantifying the asset pricing implications. In the macroe-

conomics literature, equilibrium is often derived by log-linearizing around the steady state and

assuming the constraint is always binding, for instance, Gertler and Kiyotaki (2010), Gertler and

Karadi (2011), Gertler, Kiyotaki and Queralto (2011), among others. As a result, this method

does not allow me to study the model nonlinearity and o�-steady-state dynamics, which are the

key to internally generate the time-varying equity premium and stock volatility. Furthermore,

even a higher order local approximation method imposing the assumption that the constraint is
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always binding around the steady state is still problematic. In the parameter con�guration with

which the probability of a binding constraint is low, for instance, the benchmark calibration, a

third order local approximation method that forces the constraint to be always binding around

the steady state greatly exaggerates the volatilities of asset prices and equity premium. I use Den

Haan and Marcet simulation accuracy test (1994) to con�rm the advantage of the global method

over a local approximation method.

My analysis contributes to several strands of literature. First, existing consumption based

asset pricing models have been successful in specifying preferences and cash ow dynamics to

explain a high and countercyclical equity premium in an endowment economy (Campbell and

Cochrane, 1999; Bansal and Yaron, 2004; Barro, 2006). However, these models allow no roles

for �nancial intermediary, but assume that a representative household is marginal in pricing all

the assets, therefore, they cannot speak to the close relationship between �nancial intermediary

equity capital and aggregate stock market. They also shed no light on interest rate spread between

interbank and household loans. In this paper, I show the single channel of a leverage constraint

not only links asset prices to intermediary net worth, but also provides an additional important

channel to understand a wide variety of asset market phenomena, even with an i.i.d. consumption

growth process. The success of the model does not rely on a very high e�ective risk aversion as in

habit model, or on consumption risks beyond the business cycle frequency, for instance, long-run

risks or rare diasters, which are hard to detect empirically in the data.

Second, this paper is directly related to Maggiori (2012) and He and Krishnamurthy (2012b) on

�nancial intermediary and asset pricing. As a continuous time adaptation of Gertler and Kiyotaki

(2010) type of leverage constraint into an endowment economy, Maggiori (2012) is a special case

of the model in this paper, in which the constraint never binds in the equilibrium. Thus, it has

neither implications for interest rate spread, nor implications of occasionally binding constraint

on asset pricing. In He and Krishnamurthy (2012b), the �nancial intermediary faces an equity



icantly negative risk-free interest rate in the crisis, which suggest that model implied consumption

volatility of marginal investor in the crisis state is very high, and thus induces a large precau-

tionary saving e�ect to lower the risk-free rate. Second, in my model, the ampli�cation e�ect

is quantitatively large around the steady state where the constraint is not binding, due to the

fact that the concern about potential future losses in net worth depresses the stock market today.

However, He and Krishamurthy (2012b) framework is only to capture the risk premium behavior

in crises, but features no ampli�cation e�ect in the unconstrained region.

Third, the paper also relates to the theoretical literature on intermediary frictions. There

are two broad classes of theories: leverage-constraints theories and equity risk-capital constraints.

Both theories start with the assumption that intermediaries are constrained in raising more equity.

They share two common predictions: First, intermediary equity (or net worth) is the key state

variable that a�ects asset prices. Second, the e�ect of intermediary equity on asset prices is

nonlinear, with a larger e�ect when the intermediary equity is low. The leverage-constraints models

include Geanakoplos and Fostel (2008), Adrian and Shin (2010) and Brunnermeier and Pedersen

(2009), Danielsson et al. (2011), Geanakoplos (2012), and Adrian and Boyarchenko (2012): Gertler

and Kiyotaki (2010) type of frictions lies in the �rst category. He and Krishnamurthy (2012a)

and Brunnemeier and Sannikov (2012) are examples of equity risk-capital models. The goal of

this paper is di�erent from the theoretical literature to propose alternative microfoundations for

�nancial frictions, rather I focus on the quantitative asset pricing implications of a stylized type

of leverage constraint as in Gertler and Kiyotaki (2010), which has been widely studied in the

macroeconomic and policy related literature.

More broadly, this paper is related to the literature in macroeconomics studying the e�ects

of �nancial frictions on aggregate activity, including Kiyotaki and Moore (1997), Calstrom and

Fuerst (1997) and Bernanke, Gertler and Gilchrsit (1999), among others. These papers focus on

the credit frictions faced by non-�nancial borrowers. Gertler and Kiyotaki (2010) introduces a

leverage constraint between household and �nancial intermediary, also see Gertler and Karadi

(2011), Gertler, Kiyotaki and Queralto (2011), Gertler and Karadi (2012), among others. The

equilibrium in these works is derived by log-linearizing around the steady state and assuming the

constraint is always binding. Instead, I use a global method to solve the model, and emphasize

that accounting for occasionally binding constraint is very important for quantifying asset pricing

implications of the model. My work contributes to the literature by arguing that quantitative

analysis on macroeconomic e�ects and policy evaluations of �nancial frictions should take into

account the importance of occasionally binding constraint on asset price dynamics, which lie in

the center of the propagation mechanism of �nancial frictions.
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The remainder of the paper is organized as follows: I present the model setup and de�ne

the competitive equilibrium in Section 2. In Section 3, I outline model solution, computation and

discuss some analytical results in asset pricing. Section 4 presents benchmark model’s performance

in various aspects. Section 5 provides some additional asset pricing implications, and Section 6

concludes and lays down several extensions on my research agenda. Model derivations, data

sources and computation details are provided in the Appendix.

2 The Model Setup

I embed a �nancial intermediary sector with a leverage constraint �a la Gertler and Kiyotaki (2010)

into a standard Lucas (1978) endowment economy .

There are three sectors in the economy, namely, households, �nancial intermediaries (banks),

and non-�nancial �rms. I assume households cannot invest directly in the risky asset market by

holding the equity of non-�nancial �rms. There is a limited market participation, also see Mankiw

and Zeldes (1991), Basak and Cuoco (1998), or Vissing-Jorgensen (2002). Instead, households can

only save through a risk-free deposit account with banks. Each household owns a unit mass of

banks coming in overlapping generations. Banks borrow short-term debt from households3, and

invest in the equity of the �rms. In addition to assisting in channeling funds from households to

non-�nancial �rms, banks engage in maturity transformation. They hold long term assets and

fund these assets with short term liabilities (beyond their own equity capital). In addition, the

banking sector in this model is meant to capture the entire banking sector, including commercial

banks, investment banks as well as hedge funds.

Time is discrete and in�nite, t = 0; 1; 2;���. The non-�nancial �rms in this economy are modeled

as in a Lucas (1978) tree economy which pays aggregate output every period. The aggregate output

is denoted by Y0; Y1; Y2;���. The log growth rate of the output process is given by

log

�
Yt+1

Yt

�
= �y + �"y;t+1;

in which "y;t+1 is an i.i.d. random variable with mean zero and unit variance, modeled as a

�nite-state Markov chain. The parameter � captures the aggregate consumption volatility.

I use Qt to denote the price of the Lucas tree at period t, and thus the total return on the

3To motivate a limited enforcement argument later, it is best to think of banks only obtaining deposits from
households who do not own them.
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Lucas tree, Ry;t+1, is de�ned as

Ry;t+1 =
Qt+1 + Yt+1

Qt

:

2.1 Households

There is a unit mass of identical households who makes intertemporal consumption and saving

decisions. I collapse all households into a single representative household. He is in�nitely lived

and maximizes the objective function,

max
fCt;Btg∞t=0

E0

"
1X
t=0

�tu (Ct)

#
; (1)

where Ct is the period t consumption. I consider a constant relative risk aversion (CRRA, here-

after) instantaneous utility function with risk aversion parameter , u (Ct) = 1
1�C

1�
t : In the

subsequent quantitative analysis (Section 4), I use more general recursive preferences (Kreps and

Porteus, 1978; Epstein and Zin, 1989), which disentangle the risk aversion with IES. This is quan-

titatively important for asset pricing implications as discussed in Section 4.1 and Section 4.5. More

details about recursive preferences are provided in Appendix 7.1.

The household can only save through a risk-free deposit account with banks. Let f�tg1t=0

denote the stream of (stochastic) income that the household receives, and Rf;t denote the one-

period risk-free interest rate for a loan (made by the household to the banks) that pays o� on date

t+ 1. A set of budget constraints (2) is described as the following:

C0 +B0 = �0; (2)

Ct +Bt = Bt�1Rf;t�1 + �t; t � 1:

In the above formulation, the household receives a stream of income, f�tg1t=0 and makes his

consumption and saving decisions. Ct is the period t consumption choice, and Bt is the amount

he deposits in the one-period risk-free bond, which pays a gross interest rate Rf;t in the next

period. I will show later on, �t is the amount of wealth transferred from the banking sector to

the household at period t. That is, his ownership of the banks pays o� over time as an income

stream f�tg1t=0. Technically, the f�tg1t=0 sequence is constructed so that it can be easily veri�ed

that Ct = Yt satis�es the budget constraint.

7



2.2 Financial Intermediaries

The banks come in overlapping generations. Denote ntt+j to be the total amount of net worth held

by all generation t banks at period t + j, and stt+j, the total number of shares in the Lucas tree

held by all generation t banks at period t + j. I use �t to denote the Arrow-Debreu price of one

unit of consumption good at period t denominated in terms of time 0 consumption goods. Under

this notation, the price of a unit of consumption good at period t + j denominated in terms of

period t consumption good is
Λt+j
Λt

. Given the price system f�tg1t=0, a generation t bank maximizes

the present value of its future cash ow by choose:f

max
fstt+j ;ntt+j+1g∞j=0

Et

"
1X
j=1

�t+j

�t

(1� �)j�1 �ntt+j

#
: (3)

In each period, a fraction � of the bank is forced to liquidate, in which case, their net worth

is paid o� as dividend. The remaining fraction (1� �) will survive to the next period. The

liquidation fraction/probability is i.i.d. across banks and time. As a result, the total fraction of

a generation t survived until period t + j is (1� �)j�1, and a fraction � is paid out as dividend.

Note that the bank and household share the same stochastic discount factor, Gertler and Kiyotaki

(2010) provide an \insurance story" to justify this.

Equation (4) is the initial condition of banks’ net worth. The initial generation starts with

initial net worth N0. After that, in each period, the household uses a fraction � of the Lucas tree

to set up new banks, as assumed in Gertler and Kiyotaki (2010). Therefore, � [Qt + Yt] is the

initial net worth of the generation t bank at period t.

ntt = � [Qt + Yt] if t � 1; n0
0 = N0: (4)

Equation (5) is the law of motion of net worth. At period t + j, the bank started with net

worth ntt+j and chooses hold stt+j shares of the stock. Each share pays Qt+j+1 +Yt+j+1 in the next

period, which is the �rst term on the right hand side of (5). However, the bank has to borrow

stt+jQt+j � ntt+j from the household in order to �nance the purchase of the stock. The second

term on the right hand side of (5) is the amount of loan repayment the bank has to deliver to the

household in period t+ j + 1.

ntt+j+1 = stt+j [Qt+j+1 + Yt+j+1]�
�
stt+jQt+j � ntt+j

�
Rf;t+j; for all j � 0: (5)
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Equation (6) is the participation constraint, motivated by a limited enforcement argument in

Gertler and Kiyotaki (2010). At period t + k in the future, the banker has an opportunity to

divert a � fraction of bank assets at its market price and default on its debt. And the depositors

can only recover (1��) fraction of bank asset, due to limited enforcement. Because the depositors

recognize the bank’s incentive to divert funds, they will restrict the amount they lend. In this way



is the total amount of net worth of all banks at date t that comes from existing banks (banks of

generation t� 1 and older): At period t-1 all existing banks together own one share of the Lucas

tree, which pays o� Qt+Yt. They have net worth Nt�1, and borrowed Qt�1�Nt�1 to buy the tree.

Consequently, (Qt�1 �Nt�1)Rf;t�1 is the amount of interest they have to return to the household.

The second part of the right-hand side of equation (10), � [Qt + Yt], is the amount of net worth

that is newly injected into the banking sector at period t. Recall that each period the household

use � fraction of the Lucas tree to set up a new generation of banks.

The market clearing condition also include (12) and (13). Equation (12) implies the household

and the bankers together own the Lucas tree. In particular, the household owns part of the Lucas

tree directly, through �0, and owns part of the Lucas tree indirectly, through the banks, which

is N0. Equation (13) has the following interpretation: in period t, a � fraction of all existing

banks are forced to liquidate, and their net worth ows into the household. At the same time,

the household also used � fraction of the value of the Lucas tree to set up new banks. This

completes the discussion of the market clearing conditions. Of course, given the budget constraint

and market clearing conditions, one of (in each period) is redundant according to Walras’ law.

I also need certain consistency condition:

�t =
�tu0 (Ct)

u0 (C0)
;

which captures the \insurance story" that Gertler and Kiyotaki (2010) tells.

3 Model Solution

In this section, I outline the main steps in deriving the solution, highlighting the economic mech-

anism linking intermediary equity capital and the asset prices. Detailed derivations are provided

in the Appendix 7.2.

3.1 State Variable and its Dynamics

In this economy, �nancial intermediary equity capital is an important state variable that a�ects

asset prices. As I comment below, in the discrete time setup, it turns out to be more convenient to

use normalized debt, instead of net worth, as the state variable. Both debt and net worth measure

the capitalization of �nancial intermediary sector, and therefore, I may use them interchangeably

in explaining the model intuitions.
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I de�ne normalized debt level as,

bt =
Bt�1Rf;t�1

Yt
;

as the state variable of the economy, where

Bt�1 = Qt�1 �Nt�1;

is the total amount of debt that the banks borrow from the household sector in period t � 1.

Because this is a growth economy, I normalize quantities and prices by total output, and denote:

q (bt) =
Q (bt)

Yt
;
Yt+1

Yt
= gt+1; n̂t =

Nt

Yt
; (14)

The law of motion for the state variable is therefore,

bt+1 =
Rf;t

gt+1

f(1� �) bt + (�� �) q (bt)� (1� �+ �)g : (15)

One advantage of using bt as the state variable is that: given today’s bt and an initial guess

of the price functional q (�), the law of motion (15) determines bt+1 in close form. This property

facilitates an iterative procedure to compute the equilibrium, as discussed in Section 3.4. However,

if I use normalized net worth n̂t as the state variable, a choice in Maggiori (2012) and He and

Krishnamurthy (2012), I �nd that the law of motion of normalized net worth n̂t in this discrete

time context is not in closed form.

I can now express the current period net worth, bnt, as a function of the state variable bt:

bnt = q (bt)�
bt+1gt+1

Rf;t

; (16)

= (1� �+ �) q (bt)� [(1� �) bt � (1� �+ �)] :

3.2 Recursive Formulation of Bank’s Problem

I �rst set up some notations. I use Mt+1 to denote the one-period stochastic discount factor

implied by household problem, as standard in the asset pricing literature. That is,

Mt+1 =
�t+1

�t

= �
u0 (Ct+1)

u0 (Ct)
:
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Euler equation implies:

E (Mt+1)Rf;t = 1:

Both Mt+1 and Rf;t do not depend on bt, rather, they are determined by aggregate consumption

growth process in the equilibrium. Note that with i.i.d. consumption growth, Rf;t is a constant,

which I denoted as Rf :

The bank’s optimization problem has a recursive representation:

V (bt; nt) = max
fst;nt+1g

Et [Mt+1 f�nt+1 + (1� �)V (bt+1; nt+1)g] (17)

subject to : nt+1 = st [Q (bt+1) + Yt+1]� [stQ (bt)� nt]Rf ; (18)

Et [Mt+1 f�nt+1 + (1� �)V (bt+1; nt+1)g] � �stQ (bt) : (19)

Given initial wealth nt and the current state bt, the bank chooses control variables (st; nt+1),

subject to the constraints. The constraint (18) essentially determines nt+1 given the choice st

and the realization of the random variables exogenous to the maximization problem. I do not

substitute out nt+1 just to save notation. Since nt+1 depends on st, constraint (19) restricts the

choice of st.

I conjecture that V (bt+1; nt+1) is of the form4:

V (bt+1; nt+1) = � (bt+1)nt+1; (20)

in which � (bt+1) is the shadow price of net worth at time t + 1. In this case, the maximization

problem can be written as:

V (bt; nt) = max
fst;nt+1g

Et [Mt+1 f�+ (1� �)� (bt+1)gnt+1] (21)

subject to : nt+1 = st [Q (bt+1) + Yt+1]� [stQ (bt)� nt]Rf ;

Et [Mt+1 f�+ (1� �)� (bt+1)gnt+1] � �stQ (bt) :

Given f� (bt+1) ; Q (bt+1)g, I de�ne

v (bt) = �+ (1� �)Et [Mt+1� (bt+1)]Rf ; (22)

in which v (bt) is the shadow price of net worth at date t if the participation constraint is not

4Note this is not saying that the equilibrium solution is nonlinear. It says, given equilibrium prices, the bank’s
value function is linear. The equilibrium prices are highly nonlinear, and are determined by some nonlinear method.
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binding for any bank. Also, I de�ne

P (bt) =
Et [Mt+1 f�+ (1� �)� (bt+1)g (Q (bt+1) + Yt+1)]

v (bt)
: (23)

in which P (bt) is the equilibrium price of the Lucas tree in the case where the participation

constraint does not bind for any bank. Note that v (bt) and P (bt) is completely determined once

the functional form of f� (bt+1) ; Q (bt+1)g is known.

As shown in the Appendix 7.2, I can summarize the equilibrium conditions with a compact

notation.

Q (bt) =
v (bt)Pt (bt) + v (bt)Nt (bt) ^ �Pt (bt)

v (bt) + �
: (24)

Also,

� (bt) = v (bt) _
�Q (bt)

Nt

: (25)

in which P (bt) and v (bt) are given by (22) and (23). Here I used the short-hand notation

x ^ y � min fx; yg and x _ y = max fx; yg. Obviously, Q (bt) � P (bt) and � (bt) � � (bt), and

strict inequality holds if and only if the participation constraint is binding.

3.3 Parameter Requirement

Parameter Assumption: I focus on the parameter that the lowest possible realization of con-

sumption growth, gL, is bounded by:

(1� �)Rf < gL <
(1� �)Rf

(1� �+ �)
:

The �rst part of the inequality implies that the minimum consumption growth rate of the

economy cannot be too low. The intuition is that if the shocks are too low, a long enough

sequence of bad shocks will send the total debt level in the banking sector to in�nity, which

cannot be consistent with any equilibrium. This observation has important consequences. For

example, it implies that it would be inappropriate to consider a discrete time model with normal

shocks, because the shocks are unbounded. The log-linearization method ignores this equilibrium

restriction.5

In this economy, a � fraction of net worth exits the banking sector and a � fraction of the

market value of the Lucas tree is injected back into the banking sector in each period. If � is small

5This is not an issue in continuous time given Maggiori(2012)’s experiment, as in continuous time, as time
interval shrinks, so does the size of the shocks.
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enough, or � is large enough, the bank will eventually get out of the constraint. The second part

of the inequality makes sure that we focus on the interesting case that � is large enough and � is

small enough, so that the economy will not grow out of the constraint with probability one.

The theoretical results on the parameter assumptions are provided in Ai, Bansal and Li (2012).

3.4 Computation

The literature6 usually uses a local approximation method to solve the model with Gertler and

Kiyotaki (2010) type of participation constraint, imposing the assumption that the constraint

is always binding around the steady state. One exception is Maggiori (2012), which features a

analytical global solution up to a system of ordinary di�erential equations (ODEs) in a continuous

time setting with log utility. In this paper, I use a global method to solve the model with recursive

preferences in a discrete time context, allowing for occasionally binding constraint. In Section 4.1,

I use quantitative experiments to show that the global method allowing for occasionally binding

constraint is critical to quantify the asset pricing implications in such a model.

There are several reasons which make the model computation special. First, this model fea-

tures an incomplete market, and thus the competitive equilibrium de�ned in Section 2.3 does not

correspond to a social planner’s solution. Instead, we need to solve the competitive equilibrium di-

rectly. Second, because of the occasionally binding constraint (19), standard local approximation

methods, for instance, perturbation method, cannot be used, unless we impose the assumption

that the constraint always binds around the steady state. As such, I use a recursive method, the

theoretical underpinnings of which are developed in Ai, Bansal and Li (2012), to construct the

global solution. Third, because of the nonlinearity of the model and my focus on nonlinearity-

sensitivity of asset prices with the state variable, I solve the model on a large number of grid

points to ensure accuracy.

To summarize the intuition of an iterative procedure to solve the model, the following system

(26), (27), (28), and (29) de�nes a mapping f� (b0) ; q (b0)g =) f� (b) ; q (b)g, in which I use

the convention that \0" denotes next period quantities. This system is normalized version of the

system (22)-(25).

v (b) = �+ (1� �)E [M 0� (b0)]Rf ; (26)

p (b) =
E [M 0 f�+ (1� �)� (b0)g fq (b0) + 1g g0]

v (b)
; (27)

6An incomplete list includes Gertler and Kiyotaki (2010), Gertler and Karadi (2011), Gertler, Kiyotaki and
Queralto (2011); Gertler and Karadi (2012), among others.

14





me to sum across individual banks to obtain the relation for the demand for total bank assets as

a function of total net worth,

Qt �
�t
�
Nt:

Note that the demand for total bank assets is equal to Qt, because all the �rm equity is concen-

trated in the banking sector, and the total number of shares of equity is normalized to 1.

Second, the maximum leverage ratio depends on the aggregate state variable bt, and is coun-

tercyclical, as the shadow price of net worth �t is high in bad times when net worth is scarce.

This model feature is consistent with the empirical evidence on the leverage ratio of the aggregate

intermediary sector, as shown in Figure 2.

Expecting that a bank will be able to abscond with stocks purchased with loans from household,

household will require a collateral posted against the loans. Therefore, the participation constraint

can be also rewritten/reinterpreted and aggregated as a collateral constraint, as follows:

Bt �
��t

�
� 1
�
Nt: (30)

On the left hand side of (30), the aggregate loans from household sector, Bt, is equal to Qt �Nt,

as one of the market clearing conditions (11). The right hand of (30) is equal to aggregate net

worth of the banking sector with a multiplier. It can be considered as the collateral required by

the household to post against the loans.

3.5.2 Setup of the Asset Market

I posit a retail interbank market where the banks can trade Arrow-Debreu securities (in zero

net supply) that pay one unit of net worth given a certain state among themselves. Suppose

that the banks have a better enforcement/monitoring technology than households, therefore, the

Arrow-Debreu securities are traded frictionless, i.e. no banks can default on them. Due to zero

net supply, the market clearing condition pins down the Arrow-Debreu prices. In this sense, the

stochastic discount factor suggested by the banks’ portfolio choice problem (de�ned in equation

(32)) can price all the assets traded frictionlessly among banks, with their payo�s being replicated

by the Arrow-Debreu securities. Two classes of such assets of my interest are discussed in order.

First, risky assets. I distinguish between the unobservable return on a claim to aggregation

output (consumption), Ry;t+1, and the observable return on the market portfolio, Rm;t+1; the

latter is the return on the aggregate dividend claim. As in Campbell and Cochrane (1999) and

Bansal and Yaron (2004), I model aggregate consumption and aggregate dividend as two separate
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processes. In particular, the log growth rate of aggregate dividend is speci�ed as:

log

�
Dt+1

Dt

�
= �d + ’�"y;t+1 + ’d�"d;t+1:

in which "y;t+1 is the consumption shock speci�ed as an i.i.d. random variable with �nite state

Markov chain as before, and "d;t+1 is standard Normally distributed, and captures the dividend

growth shock that is uncorrelated with consumption growth shock. Two additional parameters

’ > 1 and ’d > 1 allow me the calibrate the overall volatility of dividends (which is larger than

that of consumption in the data) and its correlation with consumption. I use Qd;t to denote the

price of the dividend claim, and the market return is thus de�ned as,

Rm;t+1 =
Qd;t+1 +Dt+1

Qd;t

:

Second, the interbank loans that lend one unit of net worth today and return (pay back) RL
f;t

units in the next period, which RL
f;t denotes the gross interest rate.

3.5.3 Asset Pricing

In this section, I discuss the equilibrium conditions that determines the returns of three kinds of

assets, namely, interest rates on household and interbank loans, and the returns for risky assets.

The interest rate on household loans is determined by the Euler equation of household prob-

lem, una�ected by frictions and has the standard interpretation of the optimal trade-o� between

consumption and savings.

Lemma 1 The interest rate for the loans from the household sector, Rf;t, must satisfy

E [Mt+1]Rf;t = 1:

Under the asset market structure in the interbank market discussed in last section, although

the banks re constrained in obtaining household deposits, they are unconstrained in choosing risky

assets and interbank loans. The stochastic discount factor suggested by the bank’s portfolio choice

problem price the risky assets and the interbank loans.

Lemma 2 The returns, Rt+1; for any assets that �nancial intermediary can trade frictionlessly

among themselves (i.e. "frictionless" means that bank cannot default on them), including Rm;t+1; Ry;t+1

and RL
f;t; must satisfy

E
�
Mt+1

�
�+ (1� �)�t+1

	
Rt+1

�
= 
t; (31)
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in which


t = �t
Pt
Qt

;

= �t + �

�
1� �t

�t

�
:

I use fMt+1 to denote the \augmented stochastic discount factor" implied by bank’s optimization

problem, fMt+1 = Mt+1

�+ (1� �)�t+1


t

; (32)

which can price all the assets traded frictionlessly among banks. Beside Mt+1, the intertemporal

marginal rate of substitution of consumption, fMt+1 also depends on an additional component,

�t+1, which I de�ne as:

�t+1 =
�+ (1� �)�t+1


t

: (33)

The term, � + (1� �)�t+1; is a measure of shadow price of net worth at the next period, which

is a weighted average of marginal value of net worth given the bank is forced to liquidate or not.

Based on the equation (31), 
t can be interpreted as the (risk adjusted) present value (in term of

consumption good) of investing one unit of net worth for one period, which is a measure of the

marginal value of net worth at current period. Thus, we can think of the second component, �t+1;as

the shadow price appreciation from period t to t+1: And the augmented stochastic discount factor

has the interpretation of the intertemporal marginal rate of substitution with respect to additional

unit of net worth. fMt+1 depends not only on household consumption, but also on intermediary

equity capital. The banker dislikes assets with low return when aggregate consumption is low,

and when his �nancial intermediary has low net worth/high debt.

Up to a log-normal approximation8, I use m, � and r denote the logarithm terms, and derive

a two-factor model for risk premium for all assets:

Et
�
rt+1 � rLf;t

�
+

1

2
vart (rt+1) = �covt (mt+1; rt+1)� covt

�
�t+1; rt+1

�
: (34)

One the right hand side of equation (34), the �rst term, �covt (mt+1; rt+1), is standard as

in the economy without frictions. The second term, �covt
�
�t+1; rt+1

�
, is responsible for asset

8The log-normality assumption may not be a good approximation here, as the model endogenously generates
negative skewness and excess kurtosis to asset prices. This assumption facilitates to obtain a two-factor asset
pricing equation for expressional purpose. The model computation and qualitative results in the paper do not rely
on this assumption.
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pricing impacts for the additional channel of a leverage constraint. As shown in 4.3, the non-linear

sensitivity of the marginal value of net worth, �t+1, with respect to a fundamental shock, translates

into countercyclical exposure of �t+1 to the shock, and therefore, generates countercyclical market

price of risk.

Note that two interest rates are priced by di�erent stochastic discount factors, therefore, there

is an interest rate spread, as stated in the following lemma:

Lemma 3 The interest rate spread, de�ned as the di�erence between interest rate on interbank

loans, RL
f;t, and interest rate on household, Rf;t, is equal to zero when participation constraint is

not binding, but becomes strictly positive when the constraint binds.

First, we have Rf;t = RL
f;t whenever the constraint is not binding, because in this case, the

leverage constraint is slack and both loans act as a perfect substitue. Second, we have Rf;t � RL
f;t

when the intermediary sector is constrained. From the demand perspective, interbank borrowing

is very attractive. It allows banks to invest in the stock without a�ecting their debt capacity with

the household. As a result, all banks want to borrow from each other on the interbank market.

Market clearing requires interest rate to go up to clear the market. I will provide more intuitions

on the interest rate spread in Section 4.3 through quantitative results.

4 Quantitative Results

In this section, I calibrate the model at an annual frequency and evaluate its ability to replicate key

moments of both cash ow dynamics and asset returns. I focus on a long sample of U.S. annual data

(1930� 2011), including pre-war data, whenever the data is available. I begin with evaluating the

model performance with CRRA utility, and compare the simulation accuracy between the global

method and a third order local approximation method. Then, I focus on the benchmark model

with recursive preferences, based on calibrated parameters reported in Table 2, and extensively

discuss its quantitative asset pricing implications. Appendix 7.3 provides more details on the data

sources.

4.1 Quantitative Evaluation the Solution Method

I begin with the model with CRRA utility and compare the performance of the global method

used in this paper with a third order local approximation method. I argue that using a global

method which allows for occasionally binding constraint is critical to quantify the asset pricing

implications of �nancial frictions.
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First, I focus on CRRA utility case at di�erent levels of risk aversion, namely,  = 1 (log

utility);  = 2 and  = 5, which are commonly used in the macroeconomics literature. For each

calibration experiment, I keep all the other parameters the same as in the benchmark calibration,

summarized in Table 2, and I compare the same model with the global method and a third order

local approximation method implemented by the Dynare++ package. For each experiment, the

moments from di�erent solution methods are listed in two adjacent columns. The results are

reported in Table 3.

I make the following observations. First, even with CRRA utility at low levels of risk aversion,

for instance,  = 1 (log utility); or  = 2, the probability of constrained region is still low,

around 20 � 30%. When risk aversion increases, the probability of constrained region rapidly

decreases. Second, it is surprising but interesting to see that the model’s implied equity premium

decreases with risk aversion, and this pattern behaves in the opposite direction as compared with

the standard Lucas economy without frictions. In CRRA utility case, the IES, as the reciprocal

of the risk aversion, decreases with risk aversion, and leads the average leverage ratio to decrease

dramatically, and in turn makes the volatility of shadow price of net worth to decrease rapidly. Since

the dampening e�ect from the volatility of shadow price of net worth dominates the marginal rate

of substitution of consumption, the �rst component in fMt+1 as de�ned in equation (32), the

augmented stochastic discount factor becomes less volatile and equity premium decreases. This

experiment conveys the message that with CRRA utility, the �nancial frictions are not likely to

have large asset pricing implications, because there is a strong trade-o� between the contributions

of two components in the augmented stochastic discount factor to the market price of risk. In

Section 4.5, I will come back to this point and argue that when we incorporate recursive preferences

with an IES larger than 1, the dampening e�ect discussed here is much weaker, and �nancial

frictions generate signi�cant impacts on asset prices.

It is also noteworthy that as the probability of constrained region decreases with risk aver-

sion, the model’s simulated moments suggested by the local approximation method have larger

discrepancies with those of the global method. To further illustrate this point, in Table 4, I �x the

risk aversion at  = 2, and compare the model results for di�erent bank asset divertible fractions

� = 0:2; 0:4; and 0:8. As above, for each experiment, I keep all the other parameters the same

as in the benchmark calibration, summarized in Table 2. Since the parameter � directly a�ects

the incentive for banks to divert by increasing its outside option value, the probability of con-

strained region is monotonically increasing with �: As suggested by the global solution, in the high

� case (� = 0:8), the constraint is almost always binding, while in the low � case (� = 0:2); the

prob(binding) is as low as 0:03. Clearly, in the high � case, the third order local approximation
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solution performs very well, and reports very close moments to the global solution. However, in

the low � case in which the constraint rarely binds, the local approximation solution which imposes

the assumption that the constraint always binds around steady state, greatly exaggerate the asset

price volatilities, and therefore overstate the equity premium. In particular, in the low theta case

(� = 0:2); the volatilities of price-dividend ratio and interbank interest rate are overestimated by

more than twice and 10 times, respectively. And the equity premium is overestimated by more

than 5 times.

I use the Den Haan and Marcet simulation accuracy test (1994) to compare the computation

accuracy of the two solution methods. The basic idea is to construct the test statistic to measure

the distance of simulated Euler equation error from zero. Under null hypothesis of exact numerical

solution, the test statistic follows a �2 distribution. Additional details on constructing the test

statistic are provided in Appendix 87. Figure 3 and 4 report the results for high � case. In partic-

ular, they plot the empirical cumulative distribution of test statistic (based on 500 simulations of

1000 annual observations) versus its true �2 distribution under the null hypothesis for the global

method and the local approximation method respectively. Both �gures show that the empirical

cumulative distributions are close to the true distribution under the null hypothesis. This implies

that a third order local approximation method works well when prob(binding) is high. Figure

5 and 6 compare the results for low � case. Figure 5 shows that the global method still works

well, however, the local approximation method fails in the sense that the empirical cumulative

distribution of simulation accuracy test statistic is far from its true distribution under the null

hypothesis.

In sum, in order to quantify the asset pricing implications of �nancial intermediary, we need

to go to recursive preferences that which allow for a separation between the IES and risk aversion,

and consequently permit both parameters to be simultaneously larger than 1, and use a global

solution method which accounts for occasionally binding constraint.

4.2 Parameter Values

In this section, I discuss the parameter values in the benchmark calibration, which are summarized

in Table 2.

Following Bansal and Yaron (2004), I set the relative rate of risk aversion, , to be 10, and the

elasticity of intertemporal substitution,  , to be 1:5. I set the discount factor, �, to be 0:994 to

match the level of risk-free interest rate for the household loans in the data.

In the log output growth process, the parameters �y and � are calibrated to match the mean

and volatility of the consumption growth in the data. Similarly, �d matches the average log
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dividend growth rate. Two additional parameters in the log dividend growth process, ’ > 1

and ’d >



4.3 Basic Properties of the Model’s Solution

In this section, I show the basic properties of the model’s solution. In particular, I present the

equilibrium prices, conditional volatilities of the market return and stochastic discount factor, and

the equilibrium market return and risk-free interest rates, as functions of the state variable in this

economy, i.e. the normalized debt level, b.

4.3.1 Equilibrium Prices

Figure 7 shows the equilibrium price-dividend ratio and marginal value of net worth as functions

of normalized debt, b, of the banking sector.

I make the following observations: First, I assume the realized consumption growth is bounded

and satis�es the parameter restrictions as discussed in Section 3.3. This is important, otherwise,

the equilibrium may not exist as shown in Ai, Bansal and Li (2012). In other words, if we assume

that shocks are conditionally (log) Normal as in typical RBC models, there will be no equilibrium

although the log-linearization method in Gertler and Kiyotaki (2010) still produces a solution. As

a result of that assumption, the equilibrium level of debt will always be bounded between bMIN

and bMAX .

Second, the top panel shows that the equilibrium price-dividend ratio is monotonically de-

creasing in b. As a comparison, the price-dividend ratio is a constant in the Lucas economy

without frictions. The intermediary normalized debt level strongly a�ects asset prices through an

adverse dynamic feedback: A negative fundamental shock causes the losses of net worth and the

accumulation of more debt, lowers the borrowing capacity of the intermediary today and into the

future, and thus lowers the investment in risky asset market and depresses the stock prices, which

further lowers the net worth. Importantly, note that the price-dividend ratio is low even when the

constraint is not binding. The possibility of a binding constraint in the future lower the bank’s

capacity to invest in the stock today, and consequently lowers the market price of the stock. This

implies that the ampli�cation e�ect on risk premium is in action even in the unconstrained region,

although the magnitude is smaller than in the constrained region.

With similar intuitions, the bottom panel shows that the marginal value of net worth is mono-

tonically increasing in b. Note that in the standard Lucas economy it is a constant, and equal to

1.

Furthermore, the dashed line in bold in Figure 7 depicts the the equilibrium prices in the

constrained region. In the region where the constraint is binding, the price-dividend ratio decreases

sharply and the marginal value of net worth increases sharply. This implies that the e�ects

of intermediary debt on asset prices are non-linear and are especially large in bad times when
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the intermediary debt is high. That is, when the intermediary sector is extremely �nancially

constrained, a negative fundamental shock is ampli�ed to have large e�ects.

4.3.2 Conditional Volatility of Returns

Figure 9 presents the conditional standard deviation of the market return (in log units) as a

function of normalized debt level b. As the banking sector becomes more �nancially constrained,

the conditional volatility of market return increases. Due to the nonlinear sensitivity of price-

dividend ratio with respect to the intermediary debt level as shown in the top panel of Figure

7, the conditional volatility of market return increases more sharply when the banking sector is

more levered. The increasing conditional volatility with the adversity of the state implies that

the exposure of market return on the consumption shock (i.e. return beta) is increasing in bad

times, which is one of the important channels to generate higher equity premium in bad times.

As a comparison, the conditional variance of the return is constant in the Lucas economy without

frictions since the price-dividend ratio is a constant.

The model endogenously produces several e�ects that have been emphasized in the empirical

literature. First, the conditional variance in stock returns is persistent. The state variable, b, is

persistent, and it translates into a persistent conditional variance of stock returns. Second, the

model endogenously generates a "leverage e�ect", that is, a consumption shock, as a negative

innovation to market return, is a positive innovation to return volatility. Third, the conditional

volatility of stock returns is countercyclical, and is higher when the intermediary net worth is low.

4.3.3 Conditional Volatility of Stochastic Discount Factor

Figure 8 presents the conditional standard deviation of stochastic discount factor (in log units) as

a function of normalized debt level b. The conditional volatility of the stochastic discount factor

determines the maximal Sharpe ratio. As the banking sector becomes more �nancially constrained,

the conditional variance of stochastic discount factor increases. As discussed in Section 3.5, the

stochastic discount factor depends not only on the aggregate consumption, but also on the shadow

price of net worth. The second component increases more sharply when the leverage of the

intermediary sector is high as shown in the bottom panel of Figure 7 and translates into higher

volatility of the stochastic discount factor. The increasing conditional volatility of the stochastic

discount factor with the adversity of the state implies that the market price of consumption shock

is increasing in bad times. This is an important channel for generating countercyclical equity

premium. As a comparison, the conditional volatility of the stochastic discount factor is constant

in the Lucas economy without frictions since the shadow price of net worth is a constant at 1, and
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the consumption growth is homoscedastic.

4.3.4 Equity Premium

Figure 10 presents the expected market return on levered dividend claim and two risk-free interest

rates, i.e. the interbank interest rate, and the interest rate on household loans, as functions of the

normalized debt level.

I de�ne the equity premium as the spread between expected market return and interbank

interest rate, Et
�
rm;t+1 � rLf;t

�
, as it is determined by the covariance of the augmented stochastic

discount factor emt+1 and the market return rm;t+1. I make the following two observations. First,

the equity premium increases with intermediary sector’s normalized debt level, b. Second, the

behavior of increases in the equity premium is asymmetric, namely, it increases much faster in

the constrained region than in the unconstrained region. Both observations are explained by

the fact that the equilibrium asset prices are more sensitive to the fundamental shocks when the

intermediary net worth is low. As the �nancial intermediary sector becomes more �nancially

constrained, both the exposure of market return to consumption shock (i.e. return beta) and the

market price of the shock increase, and thus contribute to a higher equity premium. And the

equity premium increases faster when intermediary is extremely under-capitalized.

4.3.5 Interest Rate Spread

Figure 10 shows two interest rates as functions of the normalized debt level, b. The interest rate

on household loans, rf;t, is a constant, and does not depend on the state variable b, as stated in

Lemma 1. The interest rate on interbank loans rLf;t is identical to rf;t when the constraint does

not bind. However, when the constraint binds, the interest rate spread, denoted as
�
rLf;t � rf;t

�
,

becomes strictly positive, and increases with the state variable b. This pattern is consistent with

the empirical evidence that in bad times when the banking sector is under-capitalized, the TED

spread spikes.

In order to understand the response of interbank interest rate rLf;t, it is important to focus on

the conditional mean of stochastic discount factor (in log units), i.e. logEt
�
exp

�
mt+1 + �t+1

��
,

which is equal to �rLf;t (up to a log-normal approximation):
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logEt
�
exp

�
mt+1 + �t+1

��
(35)

= Et (mt+1) +
1

2
vart (mt+1)

+Et
�
�t+1

�
+

1

2
vart

�
�t+1

�
+ covt

�
mt+1; �t+1

�
:

In the i.i.d. consumption growth case, the �rst term Et (mt+1)+ 1
2
vart (mt+1) is constant. Figure 11

plots a decomposition of the rest two terms in the conditional mean of stochastic discount factor,

i.e. Et
�
�t+1

�
and 1

2
vart

�
�t+1

�
+ covt

�
mt+1; �t+1

�
: Clearly, there are two forces determining the

response of the interbank interest rate. First, the top panel shows that Et
�
�t+1

�
is decreasing in

b: In the bad state with a negative shock which leads to a higher debt level, the net worth becomes

more valuable today than the next period. Thus, the banks are very reluctant to lend net worth

to others, instead they have strong incentive to borrow net worth and invest. Due to zero net

supply, the market clearing condition drives up the interbank interest rate. Second, the bottom

panel shows the second moment component 1
2
vart

�
�t+1

�
+ covt

�
mt+1; �t+1

�
increases in b. The

precautionary savings e�ect decreases the interbank interest rate. As shown by the magnitude of

two panels, the �rst e�ect dominates the precautionary savings e�ect, and thus overall the interest

rate on interbank loans increases in response to a negative fundamental shock, when the constraint

is binding.

4.4 The Performance of Benchmark Model

I repeatedly simulate 1000 arti�cial samples from the model, each with 81 annual observations.

For each data moment, I report the median value, 2:5; 5; 95, and 97:5 percentiles, as well as the

population value from a very long simulation (a long simulation of 10000 annual observations).

The results are summarized in Table 5.

Designed by the calibration procedure, the model matches the aggregate consumption and

dividend dynamics very well. It is noteworthy that by choosing two parameters, ’ and ’d; i.e.

the loadings of aggregate dividend growth on consumption growth shock and its own shock, the

model roughly matches the correlation between consumption and dividend growth, and the overall

volatility of dividend process.

I use two asset pricing moments, namely, the leverage ratio and the volatility of interest rate

spread to calibrate the model. Not surprisingly, the model matches these two moments very well.

The model also performs very well in matching other asset pricing moments which are not
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targeted in the calibration. First, the model internally generates a persistent uctuations of price-

dividend ratio with �rst autocorrelation of 65%, even though the driving consumption growth

process is i.i.d. Note that in the Lucas economy without frictions, price-dividend ratio is a constant.

In this economy, intermediary’s debt level is a state variable that a�ects asset prices, and thus

price-dividend ratio inherits its positive serial correlation.

Second, the model produces a high equity premium (in log units) of 4:1%, a signi�cant share

(78%) of the equity premium observed in the data, and a stock market volatility of 16:5%, only

slightly lower than a volatility of 19:8% in the data.

However, we also notice that there are some discrepancies between the model implied moments

with the data. The model implied average interest rate spread is 0:15%, lower than 0:64% in the

data. As I argued in Section 4.2, the model predicts zero interest rate spread when constraint

does not bind, however, in the data, the TED spread is largely always positive even when the

banking sector is well-capitalized. What’s more, we only have TED spread for a short sample

(1986 � 2011), therefore, the average spread may be driven high due to the inclusion of the

recent �nancial crisis period when the TED spread was enormously high. Another discrepancy

is that the model understates the volatility of the log price-dividend ratio. In the model, the

standard deviation of the log price-dividend ratio is 0:12, as compared with 0:45 in the annual

data. Historical stock prices display low-frequency variation relative to cash ow, which is not

captured in the model. The historical standard deviation of log price-dividend ratio is this high

in part because stock prices were persistently high at the end of the sample period. In Bansal and

Yaron (2004), the sample period ends at 1998, they obtain a lower standard deviation of 0:29 in

the data, but still somewhat higher than in the model here.

Overall speaking, Table 5 suggests that the model performs relatively well to match both

cash ow dynamics and asset pricing moments for U.S. data, given the driving force is an i.i.d.

process. I could introduce a predictable component in expected consumption and dividend growth

to further improve the persistence and standard volatility of price-dividend ratio.

4.5 Comparative Statics



being perturbed, all the other parameters are kept the same as in the benchmark calibration. In

Table 7, all moments are reported from a very long simulation of data from the model at the

annual frequency. The �rst column corresponding to the benchmark calibration as reported in

Table 7.

4.5.1 Di�erent Risk Aversion  and Consumption Volatility �

The �rst two variations consider changes in the risk aversion  and the consumption volatility �,

the moments of which are reported in the second and third column, respectively.

Relative to the benchmark calibration of  = 10; setting  = 5 decreases the equity premium

and the probability of entering the constrained region. When lower risk aversion, the intermediary

sector is less conservative, and is willing to take a more risky portfolio, i.e. it has a higher average

leverage ratio. Hence, the same consumption volatility is translated into a greater volatility of

net worth, and the economy is more likely to hit a binding constraint state. This is a risk-taking

e�ect. There is also a general equilibrium e�ect reinforcing the risk-taking e�ect. Due to a lower



price of risk falls and the banking sector is compensated less per unit of risk, and hence it has a

lower average net worth level, which in turn leads to the constraint to bind more frequently.

4.5.3 Di�erent Liquidation/Exit Probability �

In the �fth column of Table 7, I increase �; the fraction of banks forced to liquidate each period,

from 0:12 to 0:16. This implies that the average survival duration decreases from 8:33 years to 6:25

years. As we can see from the Table 7, since every period there is a larger fraction of net worth

paid back to the household sector, the banking sector tends to be more �nancially constrained,

and have a higher average leverage ratio. Following the same \risk taking" story as stated above,

higher risky position is translated into a higher volatility of the net worth and a higher equity

premium. Higher volatility of the net worth leads the economy to enter the constrained region

more often. This e�ect is also reinforced by the lower average net worth of the banking sector.

It is noteworthy that this experiment also reects a ampli�cation and persistence trade-o�.

With a higher �, that is, a larger fraction of aggregation net worth paid back to the household

sector each period, the equilibrium premium increases, however, the price-dividend ratio is less

persistence, translated by a less persistent net worth process. This case is expected to feature a

less return predictability.

4.5.4 Di�erent Bank Asset Divertible Fraction �

In the experiment shown in the last column, I increase the parameter �, which dictates the fraction

of bank asset divertible, from 0:4 to 0:6. This mainly a�ects the average leverage ratio of the

banking sector. As the banking sector can divert a larger fraction of bank assets, the leverage

constraint allows a much lower average leverage ratio. As a result, the volatilities of net worth

and of shadow price of net worth decrease, which leads to a decrease in equity premium and stock

market volatility. Despite of lower average leverage, the probability of constrained region is still

larger than in the benchmark case. This is because the right hand side threshold of the constraint

increases, which makes it to bind more frequently.

4.5.5 Conditional Moments

Table 6 shows the model implied moments conditional on the leverage constraint being binding

or not. Each panel of the table corresponds to a comparative statics experiment discussed above.

As shown in the table, for all cases, the leverage ratio, Sharpe ratio and interest rate spread

conditional on the constraint being binding is higher than those moments in the unconstrained
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region.

5 Additional Asset Pricing Implications

5.1 Variance Decomposition of Price-Dividend Ratio

In this section, I replicate the variance decomposition of price-dividend ratio as in Cochrane

(1992) and Campbell and Cochrane (1999). Table 8 presents the estimation results. Consistent

with previous research, the estimates in the data �nd that more than 100 percent of the price-

dividend ratio variance is attributed to expected return variation. A high price-dividend ratio

signals a decline in subsequent real dividends, so it must signal a large decline in expected returns.

The model is consistent with this feature in the data. Almost all (over 90%) the variation in price-

dividend ratio is due to changing expected returns. This evidence repeats the intuition discussed

above: the expected dividend growth is our model is constant over time, however, a negative

fundamental shock, which causes the loss of net worth (or the accumulation of net debt), provides

an endogenous channel of a discount rate shock, that greatly and persistently lowers the expected

return.

An interesting point of comparison for my result is to the habit model in Cochrane and Camp-

bell (1999). In that model, they modify the utility function of a representative investor to exhibit

time-varying risk aversion, and therefore a negative fundamental shock is a discount rate shock

by construction. Di�erently, I work on CRRA utility and recursive preferences as a more gen-

eral utility function to disentangle risk aversion with IES, but generate an endogenous channel of

time-varying equity premium as a function of the frictions in the economy.

5.2 Return Predictability

In this section, I provide the valuation on model’s ability to endogenously generate return pre-

dictability. The left panel of Table 9 reports the results on predictability of mutli-period excess

returns by the log price-dividend ratio. Consistent with evidence in earlier papers, In the data,

the R2 rises with maturity, from 4% at one year horizon to about 31% at the �ve year horizon.

The model-implied predictability of equity return is somewhat lower. The slope coe�cients in

the multi-horizon return projections implied by the model are of the right sign and magnitude

compared to those in the data.

The right panel of Table 9 shows evidence on predictability of multi-period excess returns by

the log leverage ratio of the aggregate �nancial intermediary sector. In the data, the R2 rises with
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maturity, from 9% at one year horizon to about 28% at the �ve year horizon. The model-implied

predictability of equity return is comparable to those in the data, and the slope coe�cients in the

multi-horizon return projections implied by the model are of the right sign as those in the data. In

sum, the empirical evidence presented in this section shows that the leverage constraint channel

endogenously generates signi�cant variation in equity premium.

5.3 Correlation Structure of Leverage Ratio

The economic mechanism in the model has strong implications for the correlation of leverage ratio

with various asset market moments. In Table 10, I reports the correlations of leverage growth

with price-dividend ratio, excess stock return, stock market integrated volatility and �nancial

asset growth of the intermediary sector.

In the literature, there are some discussions about the cyclicality of leverage ratio. In par-

ticular, Adrian and Shin (2010) documents that the leverage ratio of security broker-dealers is

highly procyclical, by showing that leverage ratio of this particular type of �nancial intermediary,

constructed from Flows and Fund Table in U.S., is positively correlated with its asset growth. He,

Khang and Krishnamurthy (2010) shows that there is large heterogeneity among di�erent types

of �nancial intermediary. In particular, they document that in the period of 2007q1 to 2009q1,

the broker-dealers shed assets, consistent with Adrian and Shin (2010)0s evidence, however, the

commercial banking sector increased asset holdings over this period signi�cantly, and therefore,

increased its leverage ratio. In this paper, the model intermediary sector is meant to capture

the entire �nancial intermediary sector. Thus, I follow the de�nition in Adrian Moench and Shin

(2011) to construct the leverage ratio of aggregate intermediary sector, with a coverage consistent

with the model. The details about data construction are shown in the Appendix 7.3. I �nd, in the

data, the leverage growth of aggregate intermediary sector is negatively correlated with its asset

growth, which suggests the leverage ratio is countercyclical. This is consistent with the model.

The data also suggests that in bad times when leverage ratio increases, stock price is low, the

stock return decreases in the contemporaneous period, and stock market volatility increases. The

benchmark model �ts these correlation patterns in the data well.

5.4 Correlation Structure of Interest Rate Spread

As a distinct prediction, the model draws strong implications for the correlation of interest rate

spread between interbank and household loans with price-dividend ratio, price-earnings ratio and

the stock market volatility. Figure 1 shows the periods of signi�cant widening of TED spread

31



coincide with those of dramatic increases in stock market volatility, and large decreases in price-

dividend and price-earning ratios. In Table 11, I con�rm these correlations. As I discussed in

Section 4.3, the model is consistent with the correlation patterns in the data well. In the model,

the interest rate spread, as a measure of the tightness of the credit constraint, spikes when the

intermediary sector are extremely �nancial constrained. The banks are constrained, and do not

have liquidity to lend out to others, thus, the market clearing drives up the interest rate. On

the other hand, low intermediary net worth depresses the stock market, and increases the stock

market volatility, as we discussed above. These model predictions explain the empirical evidence

very well.

5.5 Backward Looking Regression

In this section, I follow Bansal, Kiku and Yaron (2012) to evaluate the model by examining the

link between price-dividend ratio and consumption growth. I replicate their empirical procedure

and run the following regression:

pt+1 � dt+1 = �0 +
LX
j=1

�j�ct+1�j + ut+1:

In the actual data and in the simulated data, I regress the log of price dividend ratio on L lags

(L = 1; 2; :::; 5) of consumption growth. In the data, at all lag-lengths, predictability of the

price dividend ratio by lagged consumption growth is close to zero. However, in the model, price

dividend ratio predictability by lagged consumption has an R2 of 42%. This is not surprising as

prices in this model are driven primarily by the net worth, and hence, by movements in the lagged

consumption, and a reduction in growth rates causes the loss in net worth, and thus increases the

equity premium, and provide an endogenous positive discount shock, leading to a fall in current

price-dividend ratio. This feature of the model is similar to the habit model in Campbell and

Cochrane (1999). Both models are backward looking, in the sense that backward consumption

plays an important role in determining current prices. The empirical evidence presented in this

section proposes a challenge for asset pricing models with �nancial intermediary.

6 Conclusion

In this study, I show �nancial frictions are important for understanding a wide variety of dynamic

asset pricing phenomena. I build a �nancial intermediary sector with a leverage constraint �a la
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Gertler and Kiyotaki (2010) into a standard endowment economy with recursive preferences and

an independently and identically distributed consumption growth process. Quantitatively, the



7 Appendix

7.1 Derivations of Equilibrium Conditions from Household Problem

In the benchmark model, the representative household is making optimal consumption and saving

decisions by maximizing recursive preference (Kreps and Porteus, 1978; Epstein and Zin, 1989):

Ut =

"
(1� �)C

1� 1
 

t + �
�
Et
�
U1�
t+1

�� 1− 1
 

1−

# 1

1− 1
 

;

subject to the budget constraint:

Ct +Bt = Bt�1Rf;t�1 + �t:

The Euler equation gives:

Et [Mt+1]Rf;t = 1;

in which the stochastic discount factor is:

Mt+1 = �
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:

7.2 Derivations of Equilibrium Conditions from Bank’s Problem

Based on the recursive representation of a typical individual bank’s optimization problem as stated

in (21).

Use the law of the motion to substitute out nt+1. Let � (bt) denote the Lagrangian multiplier

with respect to the participation constraint.

The �rst order condition with respect to st+1 is:

(1 + � (bt))Et [Mt+1 f�+ (1� �)� (bt+1)g fQ (bt+1) + Yt+1 �Q (bt)Rf;tg] = �� (bt)Q (bt) :

(36)

The envelope condition with respect to nt is:

� (bt) = (1 + � (bt))Et [Mt+1 f�+ (1� �)� (bt+1)g]Rf;t: (37)
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The complementary slackness conditions are:

� (bt) [� (bt)nt � �stQ (bt)] = 0; (38)

� (bt) � 0;

� (bt)nt � �stQ (bt) � 0: (39)

Since all the individual banks make the same decision, it allow us to have equilibrium conditions

at the aggregation level. Equations (36), and (37) stay the same, and the complementary slackness

conditions become:

� (bt) [� (bt)Nt � �Q (bt)] = 0; (40)

� (bt) � 0;

� (bt)Nt � �Q (bt) � 0: (41)

Given f� (bt+1) ; Q (bt+1)g, I de�ne

v (bt) = �+ (1� �)Et [Mt+1� (bt+1)]Rf;t; (42)

v (bt) is the shadow price of net worth at date t if the constraint is not binding for any bank10.

Also, de�ne

P (bt) =
Et [Mt+1 f�+ (1� �)� (bt+1)g (Q (bt+1) + Yt+1)]

v (bt)
: (43)

P (bt) is the equilibrium price of the Lucas tree in the case where the participation constraint does

not bind for any bank. Note that v (bt) and P (bt) are completely determined once the functional

form of f� (bt+1) ; Q (bt+1)g is known. (The prices Mt+1 and Rf are trivially determined because

it is an endowment economy.)

It is easy to show that the Lagrangian multiplier � (bt) can be expressed as

� (bt) =
� (bt)

v (bt)
� 1: (44)

Use this relationship to substitute out � (bt), it is easy to show that the equilibrium conditions

10Note, here I adopt the following mathematical de�nition of a "binding" constraint. "Binding" means the
Lagrangian multiplier must be strictly positive. It rules out the case where the constraint holds with equality but
the Lagrangian multiplier is zero.
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are summarized by the following lammas.

Lemma 4 (Equilibrium Price of the Lucas Tree)

Given the equilibrium pricing functional fQ (bt+1) ; � (bt+1)g, we consider the equilibrium pric-

ing functional Q (bt)

1. Suppose

v (bt)Nt � �P (bt) ; (45)

then in equilibrium, we must have:

� Q (bt) = P (bt), where P (bt) is given in (43).

� The constraint (39) is not binding for any bank in the sense that the Lagrangian mul-

tiplier on the constraint must be 0.

2. Suppose

0 < v (bt)Nt < �Pt (bt) ; (46)

then in equilibrium, we must have:

� The price of the Lucas tree, Q (bt), satis�es:

Q (bt) =
v (bt) [P (bt) +Nt]

� + v (bt)
< Pt (bt) : (47)

� The constraint (39) is binding for all banks in the sense that the Lagrangian multiplier

on the constraint must be strictly positive.

3. If Nt � 0, then equilibrium cannot exist.

The three cases discussed above provide a complete characterization of the equilibrium at state

bt given the price and quantities at state bt+1. The �rst part of the lemma says that if the total

net worth of the banking sector is large enough, then the participation constraint will not bind,

and the equilibrium price of the Lucas tree is given by (43). Note, however, even if the constraint

does not bind at time t, the price is still di�erent from that in a frictionless Lucas model. This is

because the possibility of a binding constraint in the future will a�ect today’s price.

The second part of the lemma implies that if the total net worth is positive, but small, then

the participation constraint will bind, and the equilibrium price has to drop (relative the price P )
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to lower the outside value of the bankers. The third part of the condition says total net worth can

never be zero or negative in equilibrium.

Given the above lemma, we can derive the functional form of V (bt; nt). It is straightforward

to show that if V (bt+1; nt+1) is linear in nt+1 as in (20), then V (bt; nt) = � (bt)nt, and � (bt) is

given by the following lemma.

Lemma 5 (Equilibrium Value Function of the Financial Intermediary)

Given the equilibrium pricing functional fQ (bt+1) ; � (bt+1)g, we consider the equilibrium pric-

ing functional � (bt):

1. Under condition (45),

� (bt) = v (bt) :

2. Under condition (46),

� (bt) = v (bt)�
� fP (bt) +N (bt)g
N (bt) [� + v (bt)]

: (48)

To summarize the above two lemmas, under condition (45), the constraint does not bind, and

f� (bt) ; Q (bt)g can be constructed recursively from f� (bt+1) ; Qt+1 (bt+1)g:

� (bt) = �+ (1� �)Et [Mt+1� (bt+1)]Rf;t; (49)

and

Qt (bt) =
Et [Mt+1 f�+ (1� �)� (bt+1)g fQ (bt+1) + Yt+1g]

� (bt)
: (50)

Note that
Et [Mt+1 f�+ (1� �)� (bt+1)g]

� (bt)
=

1

Rf;t

:

Note that on the right hand side of equations (49) and (50), all quantities are known except

f� (bt+1) ; Q (bt+1)g. So the system (49) and (50) de�nes a mapping

f� (bt) ; Q (bt)g = T f� (bt+1) ; Q (bt+1)g :

Under condition (46), I similarly de�ne the mapping f� (bt+1) ; Q (bt+1)g =) f� (bt) ; Q (bt)g.
To save notation, we can summarize the two case with a compact notation. Using (48),

Q (bt) =
v (bt)P (bt) + v (bt)N (bt) ^ �P (bt)

v (bt) + �
: (51)
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Also,

� (bt) = � (bt) _
�Q (bt)

Nt

: (52)

Here I used the short-hand notation x ^ y � min fx; yg and x _ y = max fx; yg. Obviously,

Qt (bt) � P (bt) and � (bt) � � (bt), and strict inequality holds if and only if (46) is true, in which

case the participation constraint is binding.
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7.3 Data Sources

Consumption: Per capita consumption data are from the National Income and Product Ac-

counts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA). The data are

constructed as the sum of consumption expenditures on nondurable goods and services (Table

1.1.5, lines 5 and 6) deated by corresponding price deators (Table 1.1.9, lines 5 and 6).

Dividend: The dividend process is constructed from VWRETD and VWRETX, i.e. the

value weighted return on NYSE/AMEX including and excluding dividends, taken from CRSP.

The construction of price-dividend ratio follows the data appendix in Bansal, Khatchatrian and

Yaron (2005).

Earnings: Corporate earnings data are from corporate pro�ts (earnings) after tax (in billions

of dollars) from National Income and Product Accounts (NIPA) data reported by the Bureau of

Economic Analysis (BEA) (Table 1.14, line 29). The construction of price-earnings ratio follows

the data appendix in Bansal, Khatchatrian and Yaron (2005).

Market Return: Nominal market return is the value weighted return on NYSE/AMEX

including dividends taken from CRSP. The real market return is computed by deating the nominal

return by corresponding price deators (Table 1.1.9, lines 5 and 6).

Risk-free Rate: The nominal risk-free rate is measured by the annual 3-month T-Bill return.

The real risk-free rate is computed by subtracting the nominal risk-free rate by expected ination,

a procedure detailed in Beeler and Campbell (2012).

TED Spread: Computed by the di�erence between annualized 3-month LIBOR rate and

3-month T-bill rate. Both series are from FRED dataset.

Leverage Ratio: I follow Adrian, Moench and Shin (2011)’s composition of the aggregate

�nancial intermediary sector. From Flow of Funds Table in U.S. I aggregate the assets and

liabilities of each component, and then compute the aggregate leverage ratio based on:

Leveraget =
Aggregate Financial Assetst

Aggregate Financial Assetst � Aggregate Liabilitiest

Integrated Volatility: Integrated variance is the sum of squared daily stock returns on

NYSE/AMEX. Integrated volatility is the square root of integrated variance. The daily value

weighted return data on NYSE/AMEX including dividends are taken from CRSP.
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Table 1: Composition of Aggregate Financial Intermediary Sector

Symbol Descriptions

FINBANK Banks
CBSI Charted depository institutions, excluding credit unions
CU Credit unions

FINPI Pension Funds and Insurances
PCIC Property-casualty insurance companies
LIC Life insurance companies
PPF* Private pension funds
SLGERF* State & local government employee retirement funds
FGRF* Federal government retirement funds

FINMF Mutual Funds
MMMF* Money market mutual funds
MF* Mutual funds
CEF* Closed-end funds and exchange-traded funds

SHADBANK Shadow Banks
MORTPOOL* Agency- and GSE-backed mortgage pools
ABS Issuers of asset-backed securities
FINCO Finance companies
FUNDCORP Funding corporations

SBRDLR Security brokers and dealers

Notes - This Table is based on the de�nitions in Adrian, Moench and Shin (2010). The component
intermediaries denoted by \*" means they are only �nanced by equity.
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7.4 Additional Details of the Numerical Solutions

I approximate the i.i.d. consumption shock "y;t by a �nite-state Markov chain. I �x 5 realizations

evenly spaced on the bounded interval [�2 � �; 2 � �], in which � denotes the consumption



Following Den Haan and Marcet (1994), the accuracy test consists of obtaining long simulations

of the process and calculating

WT =

TX
t=1

wt+1 
 ht

T
;

where wt and ht





Table 3: CRRA Utility: Di�erent RRA 

Data Model

 = 1  = 2  = 5
Global Local Global Local Global Local

Avg.Leverage 3.67 4.38 2.72 3.76 3.72 2.51 2.60
E[log(n̂)] - 2.49 2.70 2.02 2.02 1.61 1.58
E(rm � rLf ) 4.58 1.75 1.92 1.09 1.40 0.99 1.57
E(rLf � rf ) 0.64 0.44 -0.05 0.56 0.37 0.12 -0.48

�[log(n̂)] - 0.30 0.44 0.23 0.26 0.114 0.16
�(p� d)] 0.45 0.07 0.07 0.05 0.06 0.02 0.05
�(rm) 19.79 17.34 17.55 16.15 16.82 14.06 15.24
�(rLf ) 0.55 0.98 2.51 1.09 1.86 0.49 1.49

prob(binding) 0.28 0.35 0.11

Notes - This table presents selected moments implied by the model with CRRA utility at di�erent risk

aversion parameters. Other parameters are kept the same as in the benchmark calibration in Table 2. All

the moments reported are computed from a very long sample of simulated data. In columns \global", the

moments are based on the global solution. In columns \Local", the moments are based on a third order

local approximation method implemented using dynare++ package. Means and volatilities of returns

and growth rates are expressed in percentage terms.
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Table 4: CRRA Utility: Di�erent Bank Assets Divertible Fraction �

Data Model

 = 2 � = 0:2 � = 0:4 � = 0:8
Global Local Global Local Global Local

E[log(n̂)] - 1.96 3.16 2.02 2.02 2.08 2.08
E(rm � rLf ) 4.58 0.96 5.54 1.09 1.40 0.44 0.35
E(rLf � rf ) 0.64 0.05 -3.85 0.56 0.37 2.30 2.32

�[log(n̂)] - 0.31 1.39 0.23 0.26 0.11 0.11
�(p� d) 0.45 0.06 0.12 0.05 0.06 0.03 0.03
�(rm) 19.79 16.21 23.65 16.15 16.82 14.67 14.55
�(rLf ) 0.55 0.36 5.77 1.09 1.86 0.71 0.71

prob(binding) 0.03 0.35 1.00

Notes - This table presents selected moments implied by the model with CRRA utility of risk aversion

parameter of 2, at di�erent fractions of bank assets divertible, �. Other parameters are kept the same

as in the benchmark calibration in Table 2. All the moments reported are computed from a very long

sample of simulated data. In columns \global", the moments are based on the global solution. In

columns \Local", the moments are based on a third order local approximation method implemented

using dynare++ package. Means and volatilities of returns and growth rates are expressed in percentage

terms.
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Table 5: Dynamics of Growth Rates and Prices Based on Benchmark Calibration

Data Benchmark Model

Estimate Median 2.50% 5% 95% 97.50% Pop

E(�c) 1.83 1.78 1.30 1.39 2.18 2.30 1.80
�(�c) 2.19 2.18 1.92 1.96 2.41 2.44 2.22
E(�d) 1.08 1.09 -1.22 -0.80 3.02 3.39 1.27
�(�d) 10.98 10.90 9.27 9.69 12.35 12.54 10.93

corr(�c;�d) 0.56 0.60 0.45 0.47 0.71 0.72 0.59
avg:leverage 3.67 4.00 3.61 3.66 4.51 4.69 4.02
�(leverage) 1.65 0.93 0.50 0.54 2.32 2.78 1.22
E(rm � rf ) 5.22 4.04 1.25 1.60 6.62 7.06 4.07
E(rm � rLf ) 4.58 3.86 1.01 1.31 6.57 6.96 3.90
�(rm) 19.79 16.54 14.00 14.42 18.75 19.41 16.69

E(p� d) 3.38 3.12 2.88 2.92 3.32 3.36 3.12
�(p� d) 0.45 0.12 0.08 0.08 0.15 0.16 0.12

AC1(p� d) 0.86 0.62 0.43 0.47 0.75 0.77 0.65
E(rLf � rf ) 0.64 0.15 0.03 0.03 0.40 0.45 0.17
�(rLf ) 0.55 0.52 0.13 0.18 0.94 1.09 0.58

Notes - This table presents descriptive statistics for aggregate consumption growth, dividends, prices, the
interest rate spread (i.e. the spread between interest rates for interbank and household loans). The data
are real, sampled at an annual frequency and cover the sample period from 1930 to 2011, whenever the
data are available. The sample period for leverage ratio is from 1945 to 2011. The sample period for
interbank interest rate is from 1986 to 2011. The \Model" panel presents the corresponding moments
implied by the model. The �rst �ve columns in the right panel represent percentiles of �nite sample
Monte-Carlo distributions. Population values (Pop) are computed from a very long sample of simulated
data. Means and volatilities of returns and growth rates are expressed in percentage terms.
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Table 6: Model Implied Conditional Moments

Unconstrained Constrained

Panel A: Benchmark
Probability 0.86 0.14
Leverage Ratio 3.69 6.02
Sharpe Ratio 0.21 0.46
Interest Rate Spread 0.00 1.21

Panel B:  = 5
Probability 0.77 0.23
Leverage Ratio 3.78 6.04
Sharpe Ratio 0.12 0.35
Interest Rate Spread 0.00 1.47

Panel C: � = 0:0156
Probability 0.58 0.42
Leverage Ratio 3.76 4.86
Sharpe Ratio 0.16 0.32
Interest Rate Spread 0.00 1.25

Panel D: � = 0:16
Probability 0.72 0.28
Leverage Ratio 4.22 6.34
Sharpe Ratio 0.23 0.45
Interest Rate Spread 0.00 1.55

Panel E: � = 0:6
Probability 0.33 0.67
Leverage Ratio 2.92 3.65
Sharpe Ratio 0.19 0.31
Interest Rate Spread 0.00 1.34

Notes - This table presents selected moments implied by the model conditional on being in the un-
constrained versus constrained regions. Each panel corresponds to a comparative statics experiment in
Table 7. All the moments reported are computed from a very long sample of simulated data. Means and
volatilities of returns and growth rates are expressed in percentage terms.
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Table 7: Comparative Statics

Benchmark  = 5 � = 0:0156 IES = 0.5 � = 0.16 � = 0.6

avg.leverage 4.02 4.30 4.23 3.49 4.81 3.41
E[log(n̂)] 2.86 2.82 2.88 2.15 2.38 2.69
�[log(n̂)] 0.25 0.28 0.19 0.20 0.26 0.19
AC1(p� d) 0.65 0.65 0.63 0.70 0.55 0.67

�(�) 0.47 0.53 0.29 0.23 0.56 0.33
�(�) 0.14 0.16 0.11 0.10 0.17 0.10

E(rm � rf ) 4.07 2.96 2.64 3.33 4.83 4.19
E(rm � rLf ) 3.90 2.62 2.11 3.03 4.39 3.29
�(rm) 16.69 16.96 11.56 15.67 16.47 15.78

E(rLf � rf ) 0.17 0.34 0.53 0.30 0.43 0.90
�(rLf ) 0.58 0.87 0.93 0.78 0.98 1.01

prob(binding) 0.14 0.23 0.42 0.23 0.28 0.67
amp:eff: 2.68 3.61 2.89 2.09 3.03 2.26

Notes - This table presents selected moments implied by the model for comparative statics experiments.
The �rst column reports the moments based on benchmark calibration. Each of the rest 5 columns
report the moments by changing one parameter, while keeping all the other parameters the same as in
the benchmark calibration. All the moments reported are computed from a very long sample of simulated
data. Means and volatilities of returns and growth rates are expressed in percentage terms. �(�) denotes
the volatility of shadow value of net worth. �(�) denotes the volatility of log(�), de�ned in equation
(33).
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Table 8: Variance Decomposition of Price-Dividend Ratio

Source Data S.E. Model

Dividends -6% (31%) 2%
Returns 108% (42%) 90.45%

Notes - This table reports the percentage of var(p � d) accounted for by returns and dividend growth
rates:

100

15X
j=1


j covt (pt � dt; xt+j)
vart (pt � dt)

x = �r and �d, respectively, and 
 = 1
1+E(r) : The \model" column is based on a very long simulation

of annual observations from the model with benchmark calibration.
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Table 9: Return Predictability

Predictor p-d log leverage

Data (S.E.) Model Data (S.E.) Model
B(1) -0.09 (0.07) -0.27 0.09 (0.05) 0.05
B(3) -0.27 (0.16) -0.43 0.22 (0.09) 0.09
B(5) -0.43 (0.21) -0.66 0.28 (0.11) 0.10

R2(1) 0.04 (0.04) 0.05 0.02 (0.02) 0.06
R2(3) 0.19 (0.13) 0.09 0.09 (0.04) 0.10
R2(5) 0.31 (0.15) 0.15 0.11 (0.05) 0.16

Notes - This table provides evidence on predictability of future excess return by log price-dividend ratio,
and log leverage ratio of the aggregate intermediary sector. The entries correspond to regressing

ret+1 + ret+2 + :::+ ret+j = �(j) +B(j)xt + vt+j

where ret+1 is the excess return, j denotes the forecast horizon in years. xt denotes log price-dividend
ratio for the left panel, and denotes log leverage ratio for the right panel. The entries for the model are
based on 1000 simulations each with 81 annual observations. Standard errors are Newey-West corrected
using 10 lags.
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Table 10: Correlations of Aggregate Leverage Ratio and Asset Prices

Data S.E. Model

corr(�lev; p� d) -0.71 0.20 -0.44
corr(�lev; rm � rLf ) -0.75 0.19 -0.93
corr(�lev; IV ) 0.38 0.16 -
corr(�lev; asset� growth) -0.60 0.16 -

Notes - This table shows the correlations between log leverage growth of aggregate intermediary sector
with asset market moments, including price-dividend ratio, stock excess return, stock market integrated
volatility and �nancial asset growth in the aggregate intermediary sector. The data are sampled at the
annual frequency, ranging from 1945 to 2011. Data constructions are described in the Appendix 7.3. The
numbers reported in \S.E." column are based on GMM Newey-West standard errors. The corresponding
model implied correlations are reported whenever applicable, based on a very long sample of simulated
data.

Table 11: Correlations of Interest Rate Spread and Asset Prices

Data S.E. Model

corr(rLf � rf ;�lev) 0.11 0.06 0.46
corr(rLf � rf ; p� d) -0.42 0.20 -0.77
corr(rLf � rf ; IV ) 0.32 0.15 0.40

Notes - This table shows the correlations between TED spread with asset market moments, including log
leverage growth of the intermediary sector, log price-dividend ratio, log price-earnings ratio and stock
market integrated volatility. The data are sampled at the annual frequency, ranging from 1986 to 2011.
Data constructions are described in the Appendix 7.3. The numbers reported in \S.E." column are
based on GMM Newey-West standard errors. The corresponding model implied correlations are reported
whenever applicable, based on a very long sample of simulated data.
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Fig. 1: TED Spread, p-d ratio, p-e ratio and Integrated Volatility

This �gure plots TED spread, log p-d ratio, log p-e ratio and integrated volatility over the sample period

1986 to 2011. TED spread and integrated volatility are in annualized percentage. Shaded areas refer to

NBER dated recessions. Data constructions are described in Appendix 7.3.
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Fig. 2: Leverage Ratio of Aggregate Financial Intermediary Sector
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This �gure shows scatter plots of the growth rate of �nancial assets (horizontal axis) versus the growth rate

of leverage ratio (vertical axis) of the aggregate �nancial intermediary sector. The sample is at quarterly

frequency, ranging from 1952q2 to 2011q4. Both axes are measured in percentage. The constructions of

the total �nancial assets and leverage ratio of the aggregate �nancial intermediary sector are described

in Appendix 7.3.
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Fig. 3: Accuracy of Global Method (High � Case)
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This �gure shows the cumulative distribution function of the simulation accuracy test statistics suggested

by Den Haan and Marcet (1994) and the corresponding �2 distribution under the null hypothesis. The

realizations of the test statistics are based on 500 simulation paths, each with 1000 annual observations.

The simulations are based on the global solution with high � case (� = 0:8).

Fig. 4: Accuracy of Local Approximation Method (High � Case)
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This �gure shows the cumulative distribution function of the simulation accuracy test statistics suggested

by Den Haan and Marcet (1994) and the corresponding �2 distribution under the null hypothesis. The

realizations of the test statistics are based on 500 simulation paths, each with 1000 annual observations.

The simulations are based on the third order local approximation solution with high � case (� = 0:8).
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Fig. 5: Accuracy of Global Method (Low � Case)
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This �gure shows the cumulative distribution function of the simulation accuracy test statistics suggested

by Den Haan and Marcet (1994) and the corresponding �2 distribution under the null hypothesis. The

realizations of the test statistics are based on 500 simulation paths, each with 1000 annual observations.

The simulations are based on the global solution with low � case (� = 0:2).

Fig. 6: Accuracy of Local Approximation Method (Low � Case)
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This �gure shows the cumulative distribution function of the simulation accuracy test statistic suggested

by Den Haan and Marcet (1994) and the corresponding �2 distribution under the null hypothesis. The

realizations of the test statistics are based on 500 simulation paths, each with 1000 annual observations.

The simulations are based on the third order local approximation solution with low � case (� = 0:2).
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Fig. 7: Equilibrium Prices as Functions of Normalized Debt Level, b
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This �gure shows the p-d ratio on aggregate dividend claim and the shadow price of net worth as functions

of the state variable b. bMIN and b



Fig. 8 - Conditional Volatility of Log SDF as a Function of Normalized Debt Level, b

42 44 46 48 50 52 54 56
20

30

40

50

60

70

80

90

b

V
ol

t(s
df

),
 p

er
ce

nt

 

 

b
ss

NO Friction
With Friction

This �gure shows conditional volatilities of stochastic discount factor with and without frictions as func-

tions of the state variable b. bss denotes the average debt level in this economy, suggested by a long

simulation from the model. The part of curves highlighted in bold denotes the region at which the con-

straint is binding. The vertical axis is measured in annualized percentage. The parameters are based on

the benchmark calibration summarized in Table 2.
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Fig. 9: Conditional Volatility of Return as a Function of Normalized Debt Level, b
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This �gure shows conditional volatilities of market return with and without frictions as functions of the

state variable b. bss denotes the average debt level in this economy, suggested by a long simulation from

the model. The part of curves highlighted in bold denote the region at which the constraint is binding.

The vertical axis is measured in annualized percentage. The parameters are based on the benchmark

calibration summarized in Table 2.
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Fig. 10: Expected Returns as Functions of Normalized Debt Level, b
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This �gure shows the expected market return, interbank interest rate, and the interest rate on household

loans as functions of the state variable b. bss denotes the average debt level in this economy, suggested

by a long simulation from the model. The part of curves highlighted in bold denotes the region at which

the constraint is binding. The vertical axis is measured in annualized percentage. The parameters are

based on the benchmark calibration summarized in Table 2.
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Fig. 11: Decomposition of Stochastic Discount Factor
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�
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�
and 1

2vart
�
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�
+covt

�
mt+1; �t+1

�
, two components in the decomposition

of the conditional mean of augmented stochastic discount factor, as shown in equation (35). bss denotes

the average debt level in this economy, suggested by a long simulation from the model. The part of curves

highlighted in bold denotes the region at which the constraint is binding. The vertical axis is measured

in annualized percentage. The parameters are based on the benchmark calibration summarized in Table

2.

60



Fig. 12: Price-dividend Ratio and Backward Consumption Growth

This �gure plots the R2 for regressing future log price-dividend ratio onto distributed lags of consumption
growth:

pt+1 � dt+1 = �0 +
LX
j=1

�j�ct+1�j + ut+1

where L, the number of lags, is depicted on the horizontal-axis. The shaded area in the �gure corresponds

to the 95% con�dence band in which data-based standard errors are constructed using a block-bootstrap.

The data employed in the estimation are real, compounded continuously, sampled on an annual frequency

and cover the period from 1930 to 2011. The \model" panel presents the predictability evidence implied

by the model, based on a very long path of simulated data and the benchmark calibration.
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