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Table 1
A simple coordination game.

Player 2
A B

Player 1
A 4,4 0, x
B x,0 x, x

How can the players overcome the challenge of coordination? In reality, coordination games are often played dynamically, 
and the option of “wait and see” is often available. For instance, in the bank-run game, which is a classic coordination game, 
each depositor might be able to wait and then make their final withdrawal decision conditional on the information they 
observe.1 This paper explores a class of dynamic games that allow each player to exercise the option to delay their choice 
of the efficient action. We find that the addition of the delay option can help players overcome miscoordination and also 
achieve the payoff-dominant outcome.

The delay option, if exercised, enables a player to observe other players’ past history of play. However, more than ob-
servability, this paper highlights the idea that exercising the delay option and not taking the inefficient action early enables 
a player to signal their intention to take the efficient choice in future play—signaling this to other players who also exer-
cise that option. We show, both theoretically and experimentally, that signaling through exercising the delay option—i.e., 
adopting the strategy of waiting and then taking the efficient action if all others wait, can work effectively to overcome the 
challenge of coordination.

Theoretical analysis The main result is proved for a multiple-player coordination game in which the efficient outcome is 
achieved if all players choose action A. For now, we will rely on the simple 2 × 2 game above to illustrate the intuition. 
The game unfolds in two periods, t = 0, 1. At t = 0, each player can choose between the irreversible choice B and “wait.” 
A player who chooses to wait observes whether or not the other player chooses B at t = 0, and then makes their final 
choice between A and B at t = 1.2 There is no cost associated with the delay option. A player who does not choose B at 
t = 0 should, in some sense, be signaling that they intend to choose A at t = 1. That is, there is a forward-induction flavor 
to choosing “wait.” Intuitively, if a player intends to play B and secure the safe payoff x, then they can do so right away, 
rather than waiting and doing so later, which does not result in any extra benefit.3 By contrast, waiting and then playing B , 
regardless of the history can be costly if the player is concerned about the other player’s payoff. That is because using this 
strategy hurts the other player if they choose to wait and then play A if the first player chose B earlier. Next, we describe 
our analysis in more detail.

First, observe that if a player waits and then receives the “B” message (i.e., the other player chooses B at t = 0), they will 
optimally choose B at t = 1. Formally, any strategy that involves choosing A after the “B” message is weakly dominated. 
Next, consider the situation in which a player receives the “no-B” message (i.e., the other player does not choose B at t = 0). 
The game then enters a simultaneous-move subgame in which each player make a final choice between A and B . A player 
might decide to choose B in this subgame if they 
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strategies. One sub-approach here is extensive-form rationalizability (Pearce, 1984; Battigalli, 1997). A second sub-approach, 
the one employed in this paper, is iterated elimination of weakly dominated strategies (Ben-Porath and Dekel, 1992).4

The second key component of our analysis is the inclusion of social preferences. Other-regarding preferences have been 
identified in various experimental studies (see Fehr and Schmidt (2006) for a survey). We adopt a very weak form of social 
preference in which there is no trade-off between a player’s own payoff and those of other players. In our model, other 
players’ payoff functions are decisive only when the player is choosing between two equivalent strategies. This particular 
concept should be contrasted with the usual models of altruism, which, in many games, will modify a player’s original 
preferences in more ways than our condition does.

In addition to iterated weak dominance, 
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Table 2
2-player payoff matrix.

Player 2
B W BB W BA W AB W AA

Player 1

B b, b b, b b, b b, c b, c
W BB b, b b, b b, c b, b b, c
W BA b, b c, b a, a c, b a, a
W AB c, b b, b b, c b, b b, c
W AA c, b c, b a, a c, b a, a

Coordinating on the risky choice A yields the highest payoff for all players, regardless of whether or not players have 
the ε-social preferences as defined in (1). We say efficient coordination is achieved if and only if di = A for all i ∈ N . As 
shown in Proposition 1, efficient coordination is not guaranteed since coordinating on the safe action B constitutes another 
equilibrium.

We say miscoordination occurs if players fail to coordinate on a certain equilibrium—that is, if there are some players 
who choose A, while some other players choose B . Miscoordination incurs a loss to the players who choose A.

Next, we add a dynamic structure to the static coordination game. This enables each player to exercise a delay option so 
that they can choose between A and B at a later date. We will investigate how this delay option changes the outcome.

2.1. Dynamic structure with irreversible choice of B

There are two periods, t = 0, 1. At t = 0, each player chooses between B and “wait.” The choice of B is irreversible. 
That is, if a player chooses B at t = 0, they cannot make any further changes. However, the players who wait at t = 0 get 
to choose between A and B at t = 1. There is no cost associated with waiting. By waiting, players can observe a binary 
message m that takes the value m = 0 if all players choose to wait at t = 0 and the value m = 1 otherwise.

We denote the set of pure strategies as

S = {B,W BB,W BA,W AB,W AA}.
The strategy of not waiting and taking B at t = 0 is denoted by B . Any strategy involving waiting at t = 0 is a plan 
contingent on the message m. We denote such a strategy by “W , di(m = 1), di(m = 0),” respectively, where di(m) is defined 
as the action chosen conditional on m at t = 1. For example, if a player chooses strategy W AB , they will wait at t = 0 and 
then choose A after observing m = 1; otherwise, they will choose B .

For any strategy profile s−i = (s j) j∈N \{i} of other players, if player i chooses to wait, then the total number of B choices 
at t = 0 can be written as

n(s−i) = ∣∣{ j ∈ N \ {i}|s j = B}∣∣,
and, accordingly, the binary message that player i will receive after waiting is

m = 1{n(s−i) ≥ 1}.
The cases m = 0 and 1 correspond to the “no-B” and “B” messages, respectively.

Proposition 2. For any si ∈ S , the strategy profile (si)Ni=1 constitutes a pure-strategy Nash equilibrium. The subgame-perfect equilibria 
are (si = B)Ni=1, (si = W BA)Ni=1 , and (si = W BB)Ni=1 .

It is easy to see that choosing A in the subgame following the message m = 1 (the “B” message) cannot be part of 
an equilibrium in this subgame. Still, as Proposition 2 demonstrates, subgame perfection does not yield a unique outcome 
or imply efficient coordination. In the subgame-perfect equilibria in which all players choose si = B , or in which they all 
choose si = W BB , each player ends up choosing B , and, therefore, efficiency does not result.

In the following theorem, we formalize forward induction as iterated simultaneous maximal deletion of weakly domi-
nated strategies, which we henceforth simply call iterated weak dominance. The theorem shows that this procedure yields 
a unique strategy profile, which achieves efficient coordination.

Theorem 1. The unique strategy profile that survives iterated weak dominance is (si = W BA)Ni=1 . Under this strategy profile, efficient 
coordination is achieved.

The argument involves three rounds of elimination. Here, for the purpose of illustration, we use the payoff matrix of 
a two-player example (see Table 2) to illustrate the elimination process. We give the main argument for each step of 
elimination and relegate the complete proof to the Appendix.
27
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i)N

=

First round (eliminate W AB and W AA) Strategy W AB is weakly dominated by W BB . To see this, note that after the message 
m = 0, these two strategies yield equivalent outcomes. When m = 1, W AB involves choosing A and yields a monetary payoff 
πi = c, while W BB yields a monetary payoff πi = b > c. The same argument can be used to show that W AA is weakly 
dominated by W BA.11,12

Second round (eliminate W BB) After the first round of elimination, the remaining pure strategies are B , W BB , and W BA. 
Regardless of what other players choose, the realized choice under both strategies B and W BB is B . Thus, these two 
strategies yield the same payoff πi = b to any player i.

Both strategies induce the same monetary payoff to player j �= i in all but one case, in which all players j �= i choose 
to wait at t = 0, and at least some players j �= i choose strategy W BA. In this case, if player i chooses B , a player j who 
chooses W BA gets payoff π j = b from playing B after seeing m = 1. However, player j’s payoff is reduced to c if player 
i chooses W BB because, in this case, player j’s realized choice is A, following m = 0. Therefore, under the assumption of 
ε-social preferences, strategy B weakly dominates W BB .

Third round (eliminate B) The two strategies remain after the second round are B and W BA. Based on the same logic as 
before, each player understands that other players will play either B or W BA, provided that they believe other players hold 
ε-social preferences. If at least one player j �= i chooses B at t = 0, both B and W BA yield the same payoff to player i and 
to all other players. However, if all j �= i choose W BA, then W BA yields a strictly higher payoff to i. Thus, B is weakly 
dominated by W BA.

Coordination outcome Since all players choose strategy W BA, the realized message is m = 0, and, thus, the realized choice 
is di = A for all i ∈N . Therefore, efficient coordination is achieved.

2.2. Discussion

We consider a simple binary-action coordination game with N ≥ 2 players. By incorporating a delay option into the static 
game, we create a dynamic variant in which the safe but inefficient choice B is the only irreversible action. The players who 
exercise the delay option can observe a binary message about whether or not all players have taken the delay option. 
Somewhat surprisingly, there is a unique strategy W BA that survives iterated weak dominance in the resulting dynamic 
game. Under this strategy, a player, by giving up the safe but inefficient choice and exercising the delay option at t = 0, 
signals their intention to play the risky but efficient choice A (conditional on observing that all other players chose to wait). 
Under this unique strategy profile, efficient coordination is achieved. This result is built on forward-induction reasoning, 
which has bite only when players have ε-social preferences.

Next, we discuss how our result depends on the extensive form that governs the play—i.e., on the observability of the 
history of play and the (ir)reversibility of the actions.

Observability of past actions
In our benchmark model, players who choose to wait can observe only a binary message regarding the history of play. 

This is a deliberate assumption meant to capture the difficulty of observing the precise history of play in a multiple-player 
setting. But a delay option, per se, does not rule out cases in which players can observe more information about the past 
history.

Here, we consider an environment in which any player i who exercises the delay option can observe the exact number 
of irreversible choices that occurred at t = 0. We denote this number by n(s−i) and say that this scenario exhibits finer 
information.13 With finer information, the strategy of waiting at t = 0 and then choosing A at t = 1 if and only if n = 0
remains the unique strategy profile that survives iterated weak dominance. To reduce the notational burden, in the finer-
information setting, we continue to write “W BA” for this strategy.

Proposition 3. With finer information, the unique strategy profile that survives iterated weak dominance is (si = W BA)Ni=1 . Under 
this strategy profile, efficient coordination is achieved.

Note that efficient coordination cannot be achieved as long as someone chooses B at t = 0; that is, n

 

Š
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m = 1 (“B” message) in the binary-message setting changes neither the unique strategy that players choose or change 
the coordination outcome. Our mechanism is robust to finer information because the intention to coordinate efficiently is 
signaled via an information set that is a singleton (n = 0), which is exactly the same as the information set m = 0 (“no B” 
message) in the binary message setting.

(Ir)reversibility structure
We have argued that a delay option can resolve the coordination problem if the inefficient choice B is the only binding 

choice at t = 0. What if both actions A and B are reversible, or if the efficient choice A, instead of B , is the only irreversible 
choice at t = 0? In this subsection, we discuss the essentiality of the reversibility structure to our result.

Neither choice is irreversible We first consider the case in which neither A nor B is irreversible at t = 0. 
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For completeness, we extend the model further to show that the delay mechanism can work in a more general coordi-
nation game, in which successful coordination does not require all players to choose the efficient choice A. We also discuss 
the case in which both actions are irreversible choices and the case in which delay is costly.15 Since these extensions are 
not essential to our theoretical analysis and experimental tests, we relegate them to the Online Appendix.

3. Experimental design

Our theory demonstrates that the dynamic structure with an irreversible B choice admits a unique prediction of efficient 
coordination via iterated dominance. However, the inferior outcome still qualifies as a subgame-perfect equilibrium, even 
with the assumption of ε-social preferences. Therefore, we experimentally test the efficacy of this delay structure and check 
whether participants’ choices are consistent with the theoretical prediction based on iterated dominance.

Since the theory speaks to games with multiple players, we do not restrict ourselves to a two-player group and, instead, 
explore four-player coordination games in the experiment. A well-developed literature that studies multi-player coordina-
tion conduct experiments on the minimum-effort, or the weakest-link, games. The coordination game we consider can be 
interpreted as a binary-action minimum-effort game played by N ≥ 2 players, with high-effort level A and low-effort level 
B , as the group coordination is determined by the lowest choice in the group. To make our experimental findings compara-
ble to those of the existing studies, in our main treatments, we follow the design of the minimum-effort games literature, 
which started with Van Huyck et al. (1990).

Following the standard protocol in the literature on minimum-effort games, our subjects played a game for 15 rounds in 
fixed four-person groups in the main treatments. Subjects’ strategies were elicited using the strategy method in the dynamic 
games. The parameters chosen were a = 55, b = 45, c = 5, and N = 4. A more detailed description of the experimental 
implementation will be given in Section 3.3. In addition, since fixed matching might invoke learning from the previous 
rounds of play and other dynamic concerns for future play, we also implemented the main treatments with randomly 
matched groups.

3.1. Main treatments

The main treatments compare the coordination efficiency in static games and the dynamic games with the irreversible 
B choice.

Static game (“St-b” and “St-b-rand”)
The two static treatments were the static version of the binary-action coordination game with “binary feedback” (“b” for 

short): at the end of each round, subjects were told whether the efficient outcome had been achieved. Feedback only about 
the coordination outcome was the standard protocol in the minimum-effort literature; that is, subjects observed only the 
minimum effort chosen in the previous rounds. Random-matching treatments are denoted as “rand” throughout the paper. 
For example, “St-b” and “St-b-rand” stand for the static treatments with fixed- and random-matching groups, respectively.

Dynamic game with irreversible B action (“BI-b” and “BI-b-rand”)
The main treatments followed the dynamic structure proposed in Section 2.1 (see Proposition 2 and Theorem 1) with 

fixed-matching (“BI-b”) and random-matching (“BI-b-rand”) groups. In these dynamic games, B was the only irreversible 
action (“BI” for short), and, at the end of each period, subjects receive binary information (“b” for short) about whether or 
not B had been chosen thus far. Each round of the game consisted of two periods. At a
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choose B ,” rather than “everyone decided to wait and see.” Thus, it might bias the results in a direction that favors our 
theory’s prediction. To mitigate this framing effect, we added the treatments “BI-b-3c” and “BI-b-3c-rand,” which included 
A in the first period as a reversible choice. The additional reversible A choice does not affect our theoretical results, but 
with this additional reversible option, the “Wait” choice at t = 0 should not be interpreted literally as a choice that is biased 
toward the choice of A at t = 1. Additionally, the binary message after the first period in all “3c” treatments was framed as 
“nobody (someone) chose B in the first period, and (not) everyone chose ‘Wait’ or A in the first period.” Altogether, these 
settings stressed the fact that the face value of the “no-B” message is merely “B was not chosen in the first period,” which 
helped mitigate the framing effect.

Finer-information treatments (“St-f”, “BI-f” and “BI-f-rand”)
In addition to the main treatments with binary feedback, we also tested the finer-information versions of these two 

treatments: “St-f” (static, finer information), “BI-f” (B-irreversible, finer information), and “BI-f-rand” (B-irreversible, finer 
information, random-matching). In contrast to the binary information setting, all finer-information treatments (“f” for short) 
enabled the subjects to observe the number of B choices at the end of first period (in dynamic treatments) and the number 
of B choices as final choices at the end of the second period. More precisely, in the “BI-f” treatment, if a subject decided to 
wait at t = 0, they would face four possible situations: everybody waited; or 1, 2, or 3 group members chose B . Therefore, 
the subject’s strategy would be whether to wait at t = 0, and, if they waited, a full plan on these four contingencies.

There is mixed evidence in the minimum-effort literature about whether providing finer information alters subjects’ 
behavior. Van Huyck et al. (1990) found that the finer-information setting did not affect coordination efficiency, while in 
the “full feedback” treatment of Brandts and Cooper (2006b), efficiency was significantly improved. The finer-information 
treatments serve as a further test of our theoretical results. Based on Proposition 3, the same efficient outcome could be 
generated with the delay option in the finer-information treatment, “BI-f.”16 Moreover, since the alternative irreversibility 
structures were theoretically studied and experimentally tested based on the finer-information setting,17 examining the 
finer-information (“BI-f”) treatments allowed for a fair comparison across different irreversibility structures.

Alternative irreversibility treatments (“NI-f” and “AI-f”)
We also tested the two alternative irreversibility structures discussed in Section 2 to distinguish our delay option with 

other potentially efficiency-enhancing dynamic mechanisms. In the “NI-f” (neither action being irreversible, finer informa-
tion) treatment, both the choices of A and B at t = 0 were reversible. At t = 0, subjects chose between A and B . There 
was no wait option in the first period. Then, at t = 1, upon observing the distribution of the choices from t = 0, they could 
freely switch to the other choice at no cost. Under this dynamic setting, a player could still express their intention to play 
A or B , but in a non-binding way.

In the “AI-f” (A-irreversible, finer information) treatment, only the A choice was binding at t = 0. In t = 0, subjects 
chose between A and the wait option. Then, in t = 1, those who chose the wait option could decide between A and B
after observing the number of A choices at t = 0. This delay structure allowed a player to credibly signal their intention to 
choose the efficient action A. However, as discussed in Section 2.2, there is no unique prediction of efficient coordination 
by SPNE or weak dominance for a four-person group (N = 4). The “AI-f” treatment further helped us understand whether 
the irreversibility structure is essential for the delay mechanism.

3.3. Experimental procedure

Fixed-matching sessions
The fixed-matching sessions were implemented by a web-based program and by Otree (Chen et al., 2016) in the Smith 

Lab at Shanghai Jiao Tong University in 2019 and 2021. A total of 396 undergraduate and graduate students participated 
in 20 sessions. At the beginning of each session, each subject arriving at the lab was randomly assigned a seat number. 
Subjects were then randomly put into groups of four that remained fixed throughout the sessions.

We adopted a between-subject design. In each session, subjects played the game from one treatment for 15 rounds with 
their group mates. The choices were labeled “1” and “2” instead of “A” and “B .” There was no time limit for making the 
choices.

In the static treatment, subjects simply submitted their choices of “1” or “2” in each round. In the dynamic treatments, 
subjects’ complete strategies were elicited using the strategy method. For example, on the choice page of our main treatment 
(“BI-b”), subjects were first asked to choose between “1” and “Wait.” If their choice was “Wait,” then two additional choices 
would appear, asking them to choose an action for each of the two possible realizations of the message, m = 0, 1. Subjects 
were made aware that only one of the choices would be realized, based on the outcome in the first period. Instead, if 

16 In addition, there is a minor concern that relates to the framing effect. In the “BI-b” treatment, subjects may have felt tempted to choose differently for 
the m = 0 and m = 1 messages, thereby inducing more choices of W BA and W AB than of W BB and W AA. The finer-information treatment helped avoid 
this.
17 For alternative irreversibility structures, it is reasonable to focus our analysis on the finer-information setting. For example, when both actions are 

reversible, it is natural to allow subjects to observe the number of A and B choices at t = 0, as in Blume and Ortmann (2007).
31
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Table 3
Experimental design.

Fixed-matching # Sessions # 4-player Groups

“St-b” (static, binary info) 5 21
“BI-b” (B irreversible, binary info) 5 21
“St-f” (static, finer info) 2 11
“BI-f” (B irreversible, finer info) 2 12
“BI-b-3c” (B irreversible, binary info,
three choices available in the first period) 2 10
“NI-f” (neither irreversible, finer info) 2 12
“AI-f” (A irreversible, finer info) 2 12

Random-matching # Sessions # 8-player Matching cohorts

“St-b-rand” 3 8
“BI-b-rand” 3 8
“BI-f-rand” 2 6
“BI-b-3c-rand” 2 6

any subject’s first-period choice was “1,” then there would be a notice telling them that they did not need to make any 
choice for the second period. However, the subject still needed to click a “confirm” button for each possible realization of 
the binary message to finish this round. With these two “confirm” buttons, the total number of clicks would be the same 
whether a subject chose to wait or not to wait at t = 0. Thus, subjects would not be able to infer others’ choices from the 
number of clicks.

In the finer-information treatments, after choosing “Wait” (or either of the two actions in the “NI-f” treatment), the four 
possible outcomes from the first period would appear, and the subject needed to choose an action for each of the four 
contingencies.18 If a subject chose not to wait, then they needed to click on the four “confirm” buttons.

At the beginning of the experiment, the instructions were first read aloud in the lab. Then, the subjects completed a 
short comprehension test before the 15-round play of the experiment. After all participants finished the experiment, we 
gave them unincentivized and anonymous questionnaires about their decision rules. Participants had not been informed 
about the questionnaires beforehand. At the end of each session, subjects were paid based on their cumulative payoffs from 
all rounds (1 point was converted into 0.07 RMB). Each session took about 45 minutes, and the average earnings were 
55 RMB (or 8.5 USD), including a participation fee of 5 RMB. The numbers of subjects in each session and treatment are 
summarized in Table 3.

Random-matching sessions
The random-matching sessions, “BI-b-rand,” “St-b-rand,” “BI-f-rand,” and 
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Table 4
Group-level regression analysis (fixed-matching).

(1) (2) (3) (4)
A_rate effi_rate payoff coor_rate

St-b -0.283*** -0.460*** -7.238*** -0.200***
(0.0266) (0.1246) (0.7278) (0.0303)

BI-f 0.0115 -0.0143 -0.941 -0.0333
(0.0460) (0.1508) (1.0871) (0.0234)

St-f -0.268*** -0.446*** -7.391*** -0.194***
(0.0225) (0.1414) (0.7392) (0.0347)

BI-b-3c -0.0835 -0.110 -0.670 0.0267
(0.0670) (0.1674) (1.2799) (0.0222)

Constant 49.60***
(0.4434)

R2 0.121
Pseudo R2 0.123 0.152 0.0893
N 1125 1125 1125 1125

Notes: Standard errors clustered at the group level are in parentheses; * p <
0.10, ** p < 0.05, *** p < 0.01.
Reference category is “BI-b.” Each observation is a group-average level in a 
round. Dependent variables (and the regression models used) are (1) per-
centages of A as final choices (tobit); (2) efficient outcome dummy (probit); 
(3) group average payoff (OLS); and (4) the dummy for coordination on 
either action (probit). Marginal effects are reported for tobit and probit re-
gressions.

Table 5
Group-level regression analysis (random-matching).

(1) (2) (3) (4)
A_rate effi_rate payoff coor_rate

BI-b-3c-rand 0.0103 0.0378 1.146 0.0218
(0.1456) (0.1295) (1.7964) (0.0438)

BI-f-rand -0.0217 -0.0166 -0.0208 -0.0137
(0.1400) (0.1303) (2.3104) (0.0462)

St-b-rand -0.216** -0.171** -1.125 -0.00906
(0.1026) (0.0821) (1.7084) (0.0650)

Constant 43.69***
(1.0857)

R2 0.0126
Pseudo R2 0.239 0.278 0.0197
N 280 280 280 280

Notes: Standard errors clustered at matching cohort level are in parenthe-
ses; * p < 0.10, ** p < 0.05, *** p < 0.01.
Reference category is “BI-b-rand.” Each observation is a matching-cohort-
average level in a round. Dependent variables (and the regression models 
used) are (1) percentages of A as final choices (tobit); (2) efficient outcome 
dummy (probit); (3) group average payoff (OLS); and (4) the dummy for 
coordination on either action (probit). Marginal effects are reported for tobit 
and probit regressions.

possible payoff 5. As a result, we do not observe a significant improvement in the average payoffs in “BI-b-rand.” For a 
detailed discussion, see Section C.2 in the Appendix.

Result 2 (Group-level efficiency: robustness). The efficacy of the delay option was found to be robust to the treatments that introduced 
an additional reversible choice “A” (“BI-b-3c”), or allowed subjects to observe finer information (“BI-f”).

Framing effect Regression analyses (Table 4 and Table 5) demonstrate no significant difference in any of the four measures 
between “BI-b” and “BI-b-3c” and between “BI-b-rand” and “BI-b-3c-rand.” In addition, a significant improvement in coor-
dination efficiency with respect to “St-b” (“St-b-rand”) was still observed in “BI-b-3c” (“BI-b-3c-rand”) (see Table 18 in the 
Appendix). Thus, although framing might contribute to the efficacy of the delay 
efficacy0 .502 .675 rg
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Furthermore, since all the random-matching sessions adopted the new presentation of the “no-B” message, the results 
here also suggest that additional framing effects potentially associated with the presentation of “no-B” message did not 
account for the observed improvement in coordination efficiency.

Finer information The results from the “BI-f” treatment confirm the theoretical prediction (Proposition 3) that a delay option 
implements the efficient coordination. As shown in Fig. 1(a), a significantly large gap in the group-level efficiencies can be 
observed between “BI-f” and “St-f.” The regression results reported in Table 9 show that the difference is significant. In 
addition, the regression results in Tables 4 and 5 show that the efficiency rates of the finer-information treatment “BI-f” (or 
“BI-f-rand”) were not significantly different from those of the binary-information treatment “BI-b” (or “BI-b-rand”).

4.2. Main results: adoption of strategies

Result 3 (Adopted strategies). In all dynamic treatments with an irreversible B choice (i.e., the “BI” treatments), the majority of the 
subjects took the unique iteratedly undominated strategy WBA in both fixed-matching and random-matching sessions.

The strategy method allowed us to decompose the strategies adopted in the dynamic treatments. Fig. 2 plots the dis-
tribution of strategies B , W BB , W BA and the dominated strategies (W AB and W AA) adopted by subjects in the “BI” 
treatments. Consistent with the theoretical prediction, the vast majority of the subjects adopted the unique iteratedly un-
dominated strategy W BA. In “BI-b,” the proportion of W BA choices was above 70 percent across all rounds.23 By contrast, 
the other two strategies consistent with the SPNE predictions, B and W BB , were adopted much less frequently, with 15 
percent of the subjects choosing B and ten percent choosing W BB , on average, over time.24

Strategy W BA was chosen by the majority of subjects in the random-matching treatment “BI-b-rand,” as well as in the 
additional treatments with the B-irreversible structure.25 Across different treatments, although the frequency varied, the 
proportions of subjects who took the strategies that could be categorized as W BA were, overall, greater than 60 percent 
(see Fig. 2).

However, we do observe a difference between the two matching protocols. Compared with “BI-b,” a higher proportion of 
subjects chose B in “BI-b-rand,” and the difference was present in the first round, though it was only marginally significant 
(Table 19 in the Appendix). This suggests that the exploration motive and other dynamic concerns might have been con-
tributing marginally to the high frequency of waiting observed in the fixed matching treatments. More statistical analysis is 
reported in Table 13 in the Appendix.

Framing effect The “BI-b-3c” and “BI-b-3c-rand” treatments allowed subjects to choose the reversible option A at t = 0 and, 
thus, adopt the strategies ABA or ABB . Theoretically, these two strategies are identical to W BA and W BB , respectively. 
They can, however, be different if the name of the reversible action carries some meaning. To test for a framing effect, we 
compared the frequency of B choices in   
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Fig. 2. Decomposition of strategies in the “BI” treatments.

Finer information Proposition 3 predicts that subjects would take the strategy equivalent to W BA with finer information 
about the strategies chosen by their group mates. The majority of subjects’ choices in the experiment are consistent with 
this theoretical prediction. To better understand how finer information changes the subjects’ adopted strategies, we further 
compared the frequency of B choices at t = 0 and the A choice after the “no-B” message at t = 1 between “BI-f” (“BI-f-
rand”) and the main treatment “BI-b” 
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Table 6
Individual-level regression.

Panel A: fixed-matching
Reference = BI-b Reference = BI-b-3c: A
(1) (2) (3) (4)
B in t0 A after no-B A after no-B A after no-B

BI-f -0.0270 0.0247
(0.0576) (0.0644)

BI-b-3c -0.00572 -0.0105
(0.0643) (0.0979)

BI-b-3c: A 0.0865
(0.0562)

BI-b-3c: Wait -0.212 -0.300
(0.1974) (0.1934)

Pseudo R2 0.00171 0.00381 0.0691 0.207
N 2580 2214 1583 513

Panel B: random-matching
Reference = BI-b-rand Reference = BI-b-3c-rand: A
(1) (2) (3) (4)
B in t0 A after no-B A after no-B A after no-B

BI-f-rand -0.0147 -0.0198
(0.0904) (0.0729)

BI-b-3c-rand -0.0381 0.00414
(0.1013) (0.0547)

BI-b-3c-rand: A 0.0553
(0.0561)

BI-b-3c-rand: wait -0.0298 -0.0872*
(0.0605) (0.0495)

Pseudo R2 0.00357 0.00156 0.00962 0.0215
N 1600 1196 836 366

Notes: Standard errors clustered at the group level are in parentheses; * p < 0.10, ** p < 0.05, *** 
p < 0.01.
Probit regressions. Reference categories are “BI-b” for Panel A and “BI-b-rand” for Panel B. Each observa-
tion is an individual subject in a round. Dependent variables are choice of B in t0 (dummy) and choice 
of A after the no-B message (dummy). Other control variables include Rounds 1–5 (dummy), Rounds 
6–10 (dummy), and Rounds 11–15 (dummy). Marginal effects are reported.

to subjects’ incentive to learn about other players’ strategies so as to facilitate future play.27 This incentive is referred to as 
the learning motive.

In “BI-b,” if a subject chose B at t = 0, then under binary information, they would not observe whether other subjects 
also chose B at t = 0. Therefore, the subjects who wished to learn about this information might have chosen “Wait” at 
t = 0, implemented by e  by bylearnby by by 
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Table 7
Social preferences and use of strategies.

Choice Belief N pct B WBB WBA
Y Y 144 90.0% 0.23 0.072 0.68

(0.028) (0.014) (0.03)
Y N 6 3.8% 0.72 0.23 0.05

(0.17) (0.17) (0.034)
N Y 2 1.2% 0.45 0.1 0.45

(0.35) (0.1) (0.45)
N N 8 5.0% 0.17 0.59 0.23

(0.073) (0.1) (0.08)

Notes: the data are from the “BI-b-rand,” “BI-f-rand,” and “BI-b-3c-rand” 
sessions. The “Choice and “Belief” columns represent whether a subject 
made a choice consistent with the ε-social preferences, and whether the 
subject believed in the ε-social preferences of other participants. The final 
three columns of Table 7 report the frequency of adopted strategies across 
the four categories of social preferences and beliefs about the social prefer-
ences of others. Standard errors are in the parentheses.

While the learning motive may have influenced the waiting decisions, it is unlikely to be the primary reason for the 
observation that the majority of subjects chose the strategy W BA. This is because, even in the treatments “BI-f” and “BI-f-
rand,” in which learning motive should have been significantly weakened, the vast majority of subjects still chose W BA.

4.3. Social preferences and adoption of strategies

According to our theory, the strategy of W BA becomes the unique iteratedly undominated strategy when the players 
have ε-social preferences and believe that other players hold these preferences. To explore the underlying mechanism of the 
delay option, we conducted additional experiments to examine whether subjects’ social preferences and their beliefs about 
others’ preferences were correlated with the adopted strategies.

Result 4 (Social preferences). The lack of ε-social preferences is positively associated with the choice of WBB. The lack of belief that 
other players hold ε-social preferences is positively associated with the choices of B and W BB.

In the sessions with randomly-matched groups, an additional block was added after the main experiments. The block 
consisted of two choice problems. The first one asked the subjects to choose from two allocations of experimental points 
between themselves and a randomly selected participant. The two options were (15, 15) and (15, 5) in experimental points 
for oneself and the other participant. Since the choice affected only the payoff of the other participant, a player with ε-social 
preferences would have selected the first option, while a spiteful subject would have selected the latter one. We consider 
the choice of (15,15) to be an indicator of ε-social preferences.

The second question elicited subjects’ beliefs about a randomly selected subject’s response to the first question. A correct 
prediction would yield a payoff of 5 experimental points. Subjects who predicted that a randomly selected participant would 
choose (15, 15) are assumed to have believed that other subjects in the game had ε-social preferences.

The social preference block’s findings are summarized in Table 7. The subjects are categorized into four groups according 
to their elicited social preferences and beliefs about the social preferences of others. The last three columns of Table 7 report 
the frequencies of adopted strategies within the four categories. Over 90 percent of the 160 subjects who participated in 
the three “BI” treatments of the random-matching sessions made the choices consistent with ε-social preferences and also 
believed that other players had ε-social preferences. These findings support our assumption that the majority of the subjects 
held the ε-social preferences and beliefs in this type of preference. Consistent with our theory, this group exhibited a greater 
propensity than others to choose the unique iteratively undominated strategy W BA than other groups.

According to our theory, if a player has ε-social preferences but does not believe that other players hold ε-social prefer-
ences, both W BA and B survive iterated weak dominance. Without ε-social preferences, regardless of players’ beliefs about 
other players’ preferences, all three strategies, W BA, W BB , and B , survive iterated weak dominance. The regression results 
in Table 8 



Y. Jin, Z. Zhou and A. Brandenburger Games and Economic Behavior 137 (2023) 23–49
Table 8
Social preferences and individual choices.

(1) (2)

Independent var. no ε-SP no belief in ε-SP
B_predict -0.0310 0.171**

(0.0765) (0.0809)

WBB_predict 0.437*** 0.366***
(0.1126) (0.0696)

WBA_predict -0.406*** -0.537***
(0.1023) (0.0744)

Pseudo R2 0.0441 0.0700
N 1581 1581

Notes: Standard errors clustered at the matching cohort level are in paren-
theses; * p < 0.10, ** p < 0.05, *** p < 0.01.
Multinomial logit regressions. Each observation is an individual subject in a 
round from the “BI” treatments with random-matching (excluding the ob-
servations in which dominated strategies were chosen). Dependent variable 
is the adopted strategy. Independent variables are the measured social pref-
erences and the belief in social preferences. ε-SP stands for the ε-social 
preferences. Control variables are the dummies for the three “BI” treat-
ments. Marginal effects are reported.

4.4. Alternative irreversibility structures

Our theory relies on the specific irreversibility structure, under which the efficient choice A is the only reversible choice 
at an earlier date. However, other reversibility structures may also improve efficient coordination, thanks to mechanisms 
different from signaling intention by waiting. For example, experimental evidence has shown that when both choices are 
reversible, multi-sided costless pre-play communication in common-interest coordination games (Cooper et al., 1992a; Char-
ness, 2000; Blume and Ortmann, 2007) can help to facilitate efficient coordination. We experimentally examined the effect 
of alternative irreversibility structures, and compare these with the mechanism of our delay option with the irreversible B
choice.

Result 5 (Alternative irreversibility). Both “NI-f” and “AI-f” improved the efficient coordination to some extent. However, that improve-
ment was lower than under “BI-f” and relied on a different mechanism.

“NI-f” treatment We find evidence that “BI-f” is more effective than “NI-f” at facilitating efficient coordination. First, ac-
cording to the estimation results (Column 6 of Table 9), similar to “BI-f,” “NI-f” increased efficiency rates in comparison to 
“St-f;” but, different from “BI-f,” the difference was not statistically significant. Moreover, comparing “NI-f” with “BI-f,” the 
efficiency rates in “NI-f” were lower than those in “BI-f,” although the differences were not statistically significant (Column 
2 of Table 9). Moreover, the frequency of the realized A choices, the group average payoffs, and the coordination rates were 
found to be significantly lower in “NI-f” than in “BI-f.”

Next, we make a detailed comparison between the two mechanisms, signaling intention by waiting and expressing 
intention via costless pre-play communication, which has also been found to improve coordination efficiency to some extent. 
Based on our theory, the choice of “Wait” signals the intention to play A at t = 1 (if all others choose to wait). From this 
perspective, the “Wait” choice in “BI-f” (or “BI-b”) is comparable to the non-binding A choice in the “NI-f” treatment.

To distinguish these two mechanisms, we first compare the proportion of A choices (among subjects who chose to wait 
at t = 0) following the “no-B” message in “BI-f” with that of subjects who chose A at t = 0 after the “all-A” message (i.e., 
everyone else in the group chose A in the first period) in “NI-f.” As shown in Column 3 of Table 10, these two proportions 
do not differ significantly.

Recall that the “no-B” message in “BI-f” simply means that no one has made a binding choice. In fact, all messages 
in the “NI-f” setting have that meaning since all actions are reversible. However, the “all-A” message in “NI-f,” on its face 
value, says that “all subjects intend to choose A.” If the face value of messages can, indeed, affect players’ beliefs and their 
subsequent moves (not in a strategic sense but in a linguistic sense), it is striking that the “no-B” message in “BI-f” can 
be as effective as the “all-A” message in “NI-f.” Indeed, our theory implies that, under the unique iteratedly undominated 
strategy profile, all subjects would take A following the “no-B” message in “BI-f.”

Furthermore, among the subjects who chose B in “NI-f”, the proportion of A choices following the “no-B” message was 
significantly lower than that among those who chose to wait at “BI-b” (Column 3 of Table 10). Therefore, combining both 
reversible choices, the “all-A” message in “NI-f” was no longer as effective as in “BI-f” (Column 2 of Table 10). Additionally, 
as can be seen from Column 1 of Table 10, for the t = 0 choices, the frequency of the irreversible B choices in “NI-f” was 
much higher than that of the reversible B choices in “BI-f,” showing that the irreversibility structure made a difference. The 
“no-B” message was generated more frequently in “BI-f,” as compared with the “all-A” message in “NI-f,” thereby inducing 
a higher frequency of A as final choices and a higher rate of efficient coordination in “BI-b.”
39
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Table 9
Group-level regressions (fixed-matching).

Reference = BI-f Reference = St-f
(1) (2) (3) (4) (5) (6) (7) (8)
A_rate effi_rate payoff coor_rate A_rate effi_rate payoff coor_rate

St-f -0.279*** -0.431*** -6.450*** -0.161***
(0.0449) (0.1539) (1.1605) (0.0368)

NI-f -0.135*** -0.189 -2.274* -0.0722** 0.146*** 0.242 4.177*** 0.0884**
(0.0465) (0.1682) (1.1598) (0.0297) (0.0209) (0.1604) (0.8421) (0.0394)

AI-f -0.199*** -0.333** -6.051*** -0.189*** 0.0812*** 0.0980 0.399 -0.0283
(0.0530) (0.1605) (1.7731) (0.0583) (0.0307) (0.1522) (1.5877) (0.0639)

Constant 48.66*** 42.21***
(0.9969) (0.5962)

R2 0.0653 0.0336
Pseudo R2 0.0772 0.0899 0.0360 0.0310 0.0425 0.0130
N 705 705 705 705 525 525 525 525

Notes: Standard errors clustered at the group level are in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.
Reference category is “BI-f” (1–4) or “St-f” (5–8). Each observation is a group-average level in a round. Dependent variables 
(and the regression models used) are (1 & 5) percentages of A as final choices (tobit), (2 & 6) efficient outcome dummy 
(probit), (3 & 7) group average payoff (OLS), and (4 & 8) the dummy for coordination on either action (probit). Marginal 
effects are reported for tobit and probit regressions.

Table 10
Individual-level regression (fixed-matching).

(1) (2) (3)
B in t0 A after no-B or all-A A after no-B or all-A

NI-f 0.118* -0.147*
(0.0713) (0.0790)

NI-f-A 0.00838
(0.0595)

NI-f-B -0.635***
(0.1019)

Pseudo R2 0.0309 0.0411 0.251
N 1440 1351 1351

Notes: Standard errors clustered at the group level are in parentheses; * 
p < 0.10, ** p < 0.05, *** p < 0.01.
Probit regressions. Reference category is “BI-f.” Each observation is an in-
dividual subject in a round. Dependent variables are choice of B in t0
(dummy) and choice of A after the no-B message (dummy). Other control 
variables include Rounds 1–5 (dummy), Rounds 6–10 (dummy), and Rounds 
11–15 (dummy). Marginal effects are reported.

“AI-f” treatment When A  the   
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hold ε-social preferences, and we found in our experiment that subjects’ ε-social preferences, and their beliefs that other 
players held such preferences, were positively related to the choices of the unique surviving iterative undominated strategy.

The unique strategy surviving iterated weak dominance—waiting and then taking the efficient action if and only if none of 
the other players took the inefficient action earlier—can be interpreted as “no first use (of the inefficient action).” Obviously, 
if everyone commits to such a strategy, which can lead to the efficient outcome, then this way of achieving efficiency 
becomes possible when each player is granted the option to delay. We believe that this simple idea should be applicable to 
more complex coordination settings.29 We leave this direction to future work.

In addition, since our experiments tested only a limited set of parameters, we acknowledge that the mechanism of 
coordination via delay could be better understood if the experimental tests are extended to a larger set of parameters. 
For example, it would be helpful to see how the efficacy of the delay mechanism is affected by changing the payoff gap 
between successful coordination and miscoordination. By changing group size and cohort size in random matching, it would 
be interesting to see how our mechanism can work with large-sized groups and how it varies with the matching protocol. 
We leave this to future research, as well.
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Appendix A. Proofs

Proof of Proposition 1. Consider player i ∈ N . When all other players take d j = B , their monetary payoffs will be π j = b
(for all j ∈N \ {i}), which is independent of player i’s choice. For player i, choosing B yields πi = b, while choosing A yields 
πi = c. Since b > c, ui(di = B, (d j = B) j∈N \{i}) > ui(di = A, (d j = B) j∈N \{i}), and, thus, {di = B}Ni=1 is a Nash equilibrium.

Similarly, when all others are taking d j = A, choosing di = A yields the same monetary payoff a for player i and all other 
players, while choosing di = B yields πi = b for player i and π j = c for all j ∈ N \ {i}. Hence, ui(di = A, (d j = A) j∈N \{i}) >
ui(di = B, (e j = A) j∈N \{i}), and, thus, {di = A}Ni=1 is a Nash equilibrium. �
Proof of Proposition 2. First, consider the case in which all other players take s j = B . In this case, m = 1, and, π j = b for all 
j ∈ N \ {i} independent of si . For player i, the private payoff from choosing si = B is b, while deviating to other strategies 
never strictly increases this private payoff but possibly strictly decreases it to c (for example, deviating to W AB). Hence, 
(si = B)Ni=1 is a Nash equilibrium.

Next, consider the case in which all other players choose W AA. In this case, W AA is a best response because (1) 
choosing W AA yields πi = a and π j = a for all j ∈ N \ {i}; (2) deviating to B yields πi = b < a (and π j = c < a); (3) 
deviating to W BB or W AB yields πi = b < a (and π j = c < a); and (4) deviating to W BA yields the same πi and π j as 
choosing W AA. Hence, (si = W AA)Ni=1 is a Nash equilibrium. Following similar arguments, we can show that (si = W BA)Ni=1
is a Nash equilibrium.

Let us further consider the case in which all other players choose W AB . Given that, W AB is a best response because (1) 
choosing W AB yields πi = b and π j = b for all j ∈ N \ {i}; (2) deviating to B yields πi = b and π j = c < b; (3) deviating 
to W AA or W BA yields πi = c < b (and π j = b); and (4) deviating to W BB yields the same πi and π j as choosing W AB . 
Hence, (si = W AB)Ni=1 is a Nash equilibrium. Following similar arguments, we can show that (si = W BB)Ni=1 is a Nash 
equilibrium.

Lastly, choosing A on the information set m = 1 is not subgame-perfect. That is because, in the subgame starting at t = 1
following m = 1—i.e., after someone has already taken B at t = 0—deviating from A to B increases one’s payoff from c to b
(without changing others’ payoffs). �
Proof of Theorem 1. First round of elimination Consider any player i and any strategy profile s−i = (s j) j∈N \{i} . We want to 
show that W AB (W AA) is weakly dominated by W BB (W BA). Consider two mutually exclusive and collectively exhaustive 
cases. In the first case, the other players adopt the strategy profile s−i = (s j) j∈N \{i} , which satisfies 

∣∣{ j ∈N \{i}|s j = B}∣∣ ≥ 1; 
that is, some other players choose B at t = 0 (or m = 1, regardless of si). Given s−i , πi(si = W BB, s−i) = b > πi(si =
W AB, s−i) = c, whereas π j(si = W BB, s−i) = π j(si = W AB, s−i) for any s j and any j ∈ N \ {i}. In the other case, s−i =
(s j) j∈N \{i} satisfies 

∣∣{ j ∈ N \ {i}|s j = B}∣∣ = 0, meaning that m = 0, regardless of si . Given this s−i , πi(si = W BB, s−i) =
πi(si = W AB, s−i) = b and π j(si = W BB, s−i) = π j(si = W AB, s−i) for any s j and any j ∈ N \ {i}.

 j
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satisfies the weak dominance relationship (since W AA and W AB are weakly dominated by W BA and W BB , respectively). 
So, we need only consider the mixtures of W BA, W BB , and B .

First, note that any mixed strategy consisting of B and W BB cannot dominate W BA because W BA is the best response 
to s−i = (s j = W BA) j∈N \{i} .

Now, suppose that B can be weakly dominated by s0 = p0 · W BB ⊕ (1 − p0) · W BA for some p0 ∈ [0, 1]. Consider the 
case in which the other players’ strategy profile is s−i = (s j = W BB) j∈N \{i} . Then, πi(si = B, s−i) = b, πi(si = s0, s−i) =
p0b + (1 − p0)c, while π j(si = B, s−i) = π j(si = s0, s−i) = b. So, weak dominance requires p0 = 1, which means that B can 
be dominated only by the pure strategy W BB . Next, fix p0 = 1 in s0 and consider the other case in which s′−i = (s j =
W BA) j∈N \{i} . Then, πi(si = B, s′−i) = πi(si = s0, s′−i) = b, while π j(si = B, s′−i) = b > π j(si = s0, s′−i) = c, which means that 
B is preferred to W BB in this case. Therefore, no such p0 ∈ [0, 1] exists, and B cannot be weakly dominated by any mixed 
strategy.

To see that W BB cannot be weakly dominated either, suppose that a mixed strategy s1 = p1 · B ⊕ (1 − p1) · W BA
for some p1 ∈ [0, 1] weakly dominates W BB . Consider the case in which the other players’ strategy profile is s−i = (s j =
W BB) j∈N \{i} . Then, πi(si = W BB, s−i) = b, πi(si = s1, s−i) = p1b +(1 − p1)c, while π j(si = W BB, s−i) = π j(si = s1, s−i) = b. 
So, weak dominance requires p1 = 1, which means that W BB could be dominated only by the pure strategy B . Next, 
consider the other case, in which s′−i = (s j = W AB) j∈N \{i} . Then, πi(si = W BB, s′−i) = πi(si = B, s′−i) = b, while π j(si =
W BB, s′−i) = b > π j(si = B, s′−i) = c, which means that W BB is preferred to B in this case. Therefore, no such p1 ∈ [0, 1]
exists, and W BB cannot be weakly dominated by any mixed strategy.

Second round of elimination The remaining strategies are B , W BB and W BA. For player i, given any s−i , πi(si =
W BB, s−i) = πi(si = B, s−i) = b. If n(s−i) ≥ 1, then m = 1 regardless of si , and, therefore, π j(si = B, s−i) = π j(si =
W BB, s−i) for all j ∈N \ {i}. This means that player i is indifferent between B and W BB . The indifference also holds when 
s j = W BB for all j. However, if, among other players, no one chooses B and some players choose W BA—i.e., n(s−i) = 0
and 

∣∣{ j ∈N \ {i}|s j = W BA}∣∣ ≥ 1—then π j′ (si = B, s−i) = b > π j′ (si = W BB, s−i) = c for all j′ ∈ { j ∈N \ {i}|s j = W BA}, and 
π j(si = B, s−i) = π j(si = W BB, s−i) = b for all j ∈ { j ∈ N \ {i}|s j = W BB}. Hence, under the ε-social preferences assump-
tion, W BB is weakly dominated by B .

No other strategies can be eliminated in this round. W BA is the unique best response if all others take W BA. When 
all others choose W BB , compared with strategy W BA, choosing B yields a strictly higher payoff to player i but the same 
payoffs to other players. Therefore, B cannot be dominated by W BA. Since we have already shown that B weakly dominates 
W BB , B cannot be eliminated in this round.

Third round of elimination The remaining strategies are B and W BA. Again, consider two mutually exclusive and collectively 
exhaustive cases regarding s−i . First, suppose that s−i satisfies 

∣∣{ j ∈N \ {i}|s j = B}∣∣ ≥ 1, which means that m = 1, regardless 
of si . Then, player i is indifferent between B and W BA. Second, suppose that s−i satisfies that 

∣∣{ j ∈N \{i}|s j = B}∣∣ = 0—i.e., 
all other players choose W BA; then, πi(si = W BA, s−i) = a > πi(si = B, s−i) = b, and π j(si = W BA, s−i) = a > π j(si =
B, s−i) = b for all j ∈N \ {i}. Hence, B is weakly dominated by W BA. �
Proof of Proposition 3. As in the proof of Theorem 1, in the first round of elimination, we can eliminate any strategies that 
involve waiting and taking A following any message that indicates that n(s−i) ≥ 1; that is, someone else has already chosen 
B at t = 0. Then, the proofs of second-round and third-round elimination follow immediately from that of Theorem 1. �
Proof of Proposition 4. For the N = 2 case, waiting and then taking B after observing that the other player chose A at t = 0
is dominated by waiting and then taking A based on this history. Given that, choosing A at t = 0 weakly dominates waiting 
and then choosing A after observing that the other player chose A, and choosing B (or A) after observing that the other 
player chose to wait. The symmetric subgame-perfect equilibria are (1) A at t = 0 and (2) wait and always choose A. It is 
worth mentioning that the strategy “waiting and choosing A if the other player chooses A; otherwise, choosing B” cannot 
constitute a symmetric equilibrium, as each player would profit from deviating to choosing A at t = 0.

In this proof for player sets with N ≥ 3, we consider a simple case with N = 3, and we find all symmetric strategy 
profiles that are consistent with iterated weak dominance. The result can easily be generalized to cases with N > 3.

In the three-player case, we can write the strategies as A, W BBB , W BBA, W BAB , W ABB , W AAB , W ABA, W BAA, 
and W AAA. The strategy of choosing A at t = 0 is denoted by A. For any strategy profile s−i of the other players, let 
nA(s−i) :=

∣∣ j ∈ N \ {i}|s j = A
∣∣ denote the number of the irreversible A choices at t = 0. Then, we denote any player i’s 

strategy associated with waiting at t = 0 as follows. “W” stands for waiting at t = 0. The first letter after “W” is for the 
choice of action when no one chose A at t = 0 (nA = 0), and the second (third) letter is for the choice of action when 
nA = 1 (nA = 2).

At t = 1, it is strictly better to choose A after observing nA = 2. Therefore, we can eliminate W BBB (by W BBA), W BAB
(by W BAA), W AAB (by W AAA), and W ABB (by W ABA). The remaining strategies are A, W BBA, W ABA, W BAA and 
W AAA.

We will show that none of the other strategies can be eliminated in this round. Consider the case in which the second 
player chooses W BBA and the third player chooses a mixed strategy p · A ⊕ (1 − p) · W BBA with p ∈ (0, b−c

a−c ). As can be 
seen from the table below, W BBA and W BBB are the only two strategies that serve as best responses. They both generate 
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the highest (expected) payoff πi . Also, they both generate the same payoff to other players (since nA obtains a value of 0 or 
1, but these two strategies differ only when nA = 2).

Strategy Payoff πi

A pa + (1 − p)c
W BBA (or W BBB) b
W BAA (or W BAB) pc + (1 − p)b
W ABA (or W ABB) pb + (1 − p)c
W AAA (or W AAB) c

Therefore, W BBA can be weakly dominated only by a mixture of W BBA and W BBB . This is not possible since W BBA
weakly dominates W BBB . Thus, we have shown that W BBA cannot be weakly dominated.

Similarly, W ABA and W ABB are the only best responses when the second player chooses W ABA, and the third player 
chooses p · A ⊕ (1 − p) · W ABA with p ∈ (0, a−c

2a−b−c ). Moreover, W BAA and W BAB are the only best responses when the 
second player chooses the mixed strategy p · A ⊕ (1 − p) ·W BBA with p ∈ (0, 1), and the third player chooses W BAA. Lastly, 
W AAA and W AAB are the only best responses when the second player chooses W AAA, and the third player chooses a 
mixed strategy p · A ⊕ (1 − p) · W ABA with p ∈ (0, 1). Following this logic, we can show that W ABA, W BAA, and W AAA
cannot be weakly dominated. In addition, A is the unique best response when all other players choose W BAA.

Therefore, in the first round of elimination, we can remove any strategy that involves choosing B after seeing all other 
players choose A (nA = N − 1) at t = 0. However, the strategy of not waiting (i.e., A) and strategies that involves waiting 
and then choosing either B or A after any nA < N − 1 (i.e., W BBA, W ABA, W BAA and W AAA) cannot be eliminated.

After eliminating W BBB , W BAB , W ABB , and W AAB , by repeating the same arguments for why other strategies cannot 
be eliminated in the first round, we can show that each strategy that survives the first round of elimination is, in fact, 
a unique best response to some strategies chosen by the other players. Thus, none of them can be eliminated later.

To summarize, the strategy profiles consistent with iterated weak dominance are: (1) all players choose A at t = 0; and 
(2) all players wait and choose A or B when nA < N − 1 but choose A when nA = N − 1.

The subgame-perfect equilibria take the following forms. All players choose A at t = 0. In all other cases, all players 
choose “wait” at t = 0, choose A when nA = N − 1, and choose A or B if nA = 2, ..., N − 2. There are multiple possibilities 
for mA = 0, 1. In one case, all players also choose A following nA = 0, 1. In another case, all players choose B following 
nA = 0, 1. In the third case, all players choose A following nA = 0 and choose B following nA = 1.

It is easy to check that any of the strategies A, W AAA, W BBA, or W ABA can constitute a subgame-perfect equilibrium. 
To see why each player choosing strategy W BAA is not such an equilibrium, consider the case in which the other two 
players choose W BAA. Then, a player would choose A and receive a (monetary) payoff a rather than choosing strategy 
W BAA and receiving a (monetary) payoff of b. �
Appendix B. Choice dynamics analysis

The experiments in this study consisted of the fixed-matching sessions that follow the design in the minimum-effort 
literature and of the random-matching sessions, which, hypothetically, would be less influenced by the learning and ex-
ploration motives, as well as other dynamic concerns. Though our theory provides no basis for understanding how various 
types of dynamic concerns affect subjects’ choices and group coordination over time, in this section, we empirically an-
alyze how the coordination outcome in previous rounds—in particular, the most recent round—affected subjects’ choices, 
controlling for their initial choices.

We first categorize subjects, based on their choices of undominated strategies B , W BA, and W BB in the most recent 
round, into three categories. We then investigate how the following three types of observable coordination outcomes in the 
most recent round and in all the past rounds influenced their next-round choice of strategy. In each round, the outcomes 
could be classified as:

• Outcome h1: Efficient coordination was achieved.
• Outcome h2: Efficient outcome was not achieved, and it was observed that someone chose B in the first period.
• Outcome h3: Efficient outcome was not achieved, but no one chose B in the first period. This suggests that at least one 

player chose W BB (or W AB).

Table 11 presents the multinomial regressions of subjects’ choices on the histories of the three types of outcomes. History 
enters the regressions in two ways. First, there are two dummy variables on whether h2 or h3 was observed in the latest 
round. Second, we include two variables of the percentages of h2 and h3 in the past rounds (excluding the latest round). 
That is, we assume that the outcome from the latest round has a higher weight in the history.

The W BA choosers (Columns 1 and 4 in Table 11) were affected mainly by the occurrence of h3 in the latest round, 
which greatly reduced the probability of continuing with the W BA choice in the next  round. Among these subjects, the 
occurrence of h3 significantly increased the frequency of B choices in the next round to avoid further harm. A smaller 
fraction of them switched to W BB after being hurt by others’ use of W BB , which might be explained by the motive of 
43



Y. Jin, Z. Zhou and A. Brandenburger Games and Economic Behavior 137 (2023) 23–49
Table 11
Choices and learning (“BI” treatments).

(1) (2) (3) (4) (5) (6)
fix_WBA fix_B fix_WBB rand_WBA rand_B rand_WBB

Outcome h2

B_predict 0.0952*** 0.0294*
(0.0298) (0.0168)

WBB_predict -0.00546 0.00333
(0.0139) (0.0223)

WBA_predict -0.0897*** -0.0328
(0.0319) (0.0321)

Outcome h3

B_predict 0.334*** -0.00244 0.173*** 0.0406
(0.0944) (0.0857) (0.0422) (0.0786)

WBB_predict 0.0981*** -0.208* 0.0524* -0.205*
(0.0374) (0.1117) (0.0268) (0.1121)

WBA_predict -0.432*** 0.210** -0.225*** 0.164*
(0.1014) (0.0999) (0.0502) (0.0882)

%_Outcome h2

B_predict -0.00163 0.190** 0.0246 0.0286 0.250*** 0.246
(0.0123) (0.0940) (0.1088) (0.0218) (0.0746) (0.2214)

WBB_predict 0.00497 -0.0598 -0.0408 0.0578* -0.0124 -0.180
(0.0176) (0.0762) (0.1275) (0.0339) (0.0717) (0.1688)

WBA_predict -0.00334 -0.130 0.0162 -0.0863** -0.237*** -0.0654
(0.0184) (0.0810) (0.0649) (0.0419) (0.0582) (0.1265)

%_Outcome h3

B_predict 0.0341 -0.0555 0.127 -0.0256 0.443** 0.188
(0.0368) (0.1508) (0.1160) (0.0555) (0.1832) (0.3255)

WBB_predict 0.0353 0.247** -0.111 0.155** -0.0280 0.127
(0.0216) (0.1008) (0.1370) (0.0667) (0.1165) (0.3145)

WBA_predict -0.0694 -0.191* -0.0163 -0.129* -0.415*** -0.314
(0.0451) (0.1089) (0.0562) (0.0710) (0.1303) (0.2631)

Pseudo R2 0.341 0.104 0.114 0.125 0.131 0.133
N 1775 332 242 915 352 147

Notes: Standard errors clustered at the group or matching cohort level are in parentheses; * p < 0.10, 
** p < 0.05, *** p < 0.01.
Multinomial logit regressions. Each observation is an individual subject in a round who adopted the 
strategies W BA, B , or W BB in the previous round. Dependent variable is the adopted strategy. Explana-
tory variables include the percentage of h2 and h3 in the previous rounds, and the dummy variables of 
h2 or h3 occurring in the last round. Other control variables include Rounds 2–5 (dummy), Rounds 
6–10 (dummy), Rounds 11–15 (dummy), choice in the first round, and treatments. Marginal effects are 
reported.

retaliation,30 which suggests negative reciprocity and/or spitefulness. The impacts of the observation h3 are much smaller 
in the random matching treatments (Column 4 in Table 11), possibly due to a weakened dynamic concern when groups are 
randomly matched.

On the other hand, our data show that, among the groups in which everyone chose W BA, 99.29% and 96.25% of the 
members chose W BA in the next round in “BI-b” and “BI-b-rand,” respectively. Therefore, everyone choosing W BA ap-
peared to be stable based on this observation.

For W BB
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)  ( a n d
Table 12
Group-level regressions (fixed- vs. random-matching).

Reference = BI-b Reference = St-b
(1) (2) (3) (4) (5) (6) (7) (8)
A_rate effi_rate payoff coor_rate A_Rate effi_rate payoff coor_rate

BI-b-rand -0.195** -0.239** -5.916*** -0.0602**
(0.0880) (0.1039) (1.1698) (0.0305)

St-b-rand -0.118*** -0.0808* 0.197 0.0651
(0.0292) (0.0491) (1.4364) (0.0542)

Constant 49.60*** 42.37***
(0.4480) (0.5831)

R2 0.0717 0.0000855
Pseudo R2 0.0422 0.0599 0.280 0.0666 0.0551 0.00778
N 395 395 395 395 395 395 395 395

Notes: Standard errors clustered at the group or matching cohort level are in parentheses; * p < 0.10, ** p < 0.05, *** 
p < 0.01.
Reference category is “BI-b” (1–4) or “St-b” (5–8). Each observation is a group- or matching-cohort-average level in a round. 
Dependent variables (and the regression models used) are (1 & 5) percentages of A as 5 



Y. Jin, Z. Zhou and A. Brandenburger Games and Economic Behavior 137 (2023) 23–49

were  to 

coordinate 

 the
Table 14
Miscoordination analysis.

No miscoordination Miscoordination obs.
on A on B ave. pay % % A choice ave. pay

BI-b-rand 26.2% 58.1% 48.1 15.6% 63.0% 19.8 160
St-b-rand 0.6% 82.5% 45.1 16.9% 37.0% 30.2 160

Notes: The first two columns report the percentages of the groups coordinated on A or B . The 
3rd-5th columns report the percentage of miscoordinated groups, the frequencies of A as final 
choices in the miscoordinated groups, and the average payoffs of the miscoordinated groups.

Table 15
Number of A as final choices in the miscoordinated groups.

1A 2A 3A obs.

BI-b-rand 4 (16.0%) 4 (16.0%) 17 (68.0%) 25
St-b-rand 16 (59.3%) 9 (33.3%) 2 (7.4%) 27

concerns33 with fixed-matching. However, there was no significant difference in the frequencies of A choices after the 
“no-B” message or in the frequencies of the W BA choices.

Additionally, the overall differences in the waiting frequencies might also be due to learning from previous experiences 
in the later rounds. According to the dynamic analysis in Appendix B, subjects were more likely to switch to strategy B after 
being hurt by someone in their group choosing W BB . Given that around 10% of the subjects chose W BB in both fixed- and 
random-matching sessions, when groups were randomly formed, the chance to meet such a groupmate at least once was 
greatly increased. It might explain the overall higher frequency of taking B in the random-matching treatments as well as 
the gap in the adoption rates of W BA between fixed and random matching in the later rounds.

C.2. Miscoordination in the random-matching treatments

This subsection presents the data analysis on the differences in the patterns of miscoordination in “BI-b-rand” and “St-
b-rand” and how they led to the insignificant difference in average payoffs. Table 14 reports the percentage of groups that 
successfully coordinated on either action A or B or miscoordinated in these two treatments.

We found that the overall rates of miscoordination did not differ much (15.6% v.s. 16.9%) between “BI-b-rand” and “St-
b-rand.” However, conditional on miscoordination (or coordination on either action), the distributions of choices were quite 
different. We discuss the findings in detail below.

Coordination on either action When coordination   

on
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Table 16
One-sided Mann–Whitney U test of social preference and adoption of 
strategies.

ε-SP, Y vs. N p-value belief, Y vs. N p-value
B 715.5000 0.3993 770.0000 0.0529
WBB 178.5000 0.0000 429.0000 0.0000
B+WBB 316.0000 0.0009 251.5000 0.0000

The first (last) two columns provides the U statistics and the p-value of 
the test between subjects consistent or not consistent with ε-SP (belief in 
others’ ε-SP).

Table 17
Social preferences and experience in the coordination 
games.

(1) (2)
no ε-SP no belief in ε-SP

pay5 -0.174 -0.555
(0.1790) (0.3478)

Pseudo R2 0.0456 0.0620
N 160 160

Notes: Standard errors clustered at the matching cohort 
level are in parentheses; * p < 0.10, ** p < 0.05, *** p <
0.01.
Probit regressions. Each observation is an individual sub-
ject. Control variable: treatments. Marginal effects are 
reported.

C.3. Additional analysis of social preferences

C.3.1. Mann–Whitney U test of social preferences and adoption of strategies
In Section 4.3, we performed the regression analysis to compare the adoption of strategies between the subjects whose 

behaviors were either consistent or inconsistent with the ε-SP or belief in ε-SP in the social preference block. Since the 
behaviors of only a small group of subjects whose behaviors were not consistent with the ε-SP or belief in ε-SP, these two 
comparison groups are not balanced. To address this issue, we conducted additional statistical analyses with the one-sided 
version of the non-parametric Mann–Whitney U test (Mann and Whitney, 1947; Wilcoxon, 1945). We tested whether the 
adoption of B (W BB and the sum of B and W BB) among the group of subjects whose choices were not consistent with 
ε-social preference or with the beliefs about other teammates’ ε-social preference was more frequent than that among the 
subjects whose choices were consistent with ε-social preference and beliefs about others’ ε-social preference.

Table 16 reports the Mann–Whitney U statistics and the p-values. We find that these strategies were adopted more 
frequently in groups without ε-SP (or belief in ε-SP), with the exception of B , for which the absence of ε-SP did not 
significantly reduce the frequency of its selection. These new findings are largely consistent with the regression results in 
Table 8.

C.3.2. Social preference and experience
A caveat to our measure of ε-social preferences is that, since the social preference block was added after the main 

experiment, it is possible that the experience in the experiment affected subjects’ choicescho i c e s

https://doi.org/10.1016/j.geb.2022.11.001
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Table 18
Additional group-level regression analysis.

Panel A: Fixed-matching
(1) (2) (3) (4)
A_rate effi_rate payoff coor_rate

BI-b-3c 0.246 0.350** 6.568*** 0.227***
(0.1594) (0.1574) (2.1130) (0.0531)

Constant 42.37***
(1.2640)

R2 0.109
Pseudo R2 0.0337 0.118 0.0902
N 465 465 465 465

Panel B: Random-matching
(1) (2) (3) (4)
A_rate effi_rate payoff coor_rate

BI-b-3c-rand 0.277* 0.487* 2.271 0.0833
(0.1476) (0.2800) (3.2021) (0.0959)

Constant 42.56***
(2.3136)

R2 0.0304
Pseudo R2 0.155 0.366 0.0692
N 140 140 140 140

Notes: Standard errors clustered at the group level are in parentheses; * 
p < 0.10, ** p < 0.05, *** p < 0.01.
Reference category is “St-b” for Panel A and “St-b-rand” for Panel B. Each 
observation is a group-average level in a round. Dependent variables (and 
the regression models used) are (1) percentages of A as final choices (tobit); 
(2) efficient outcome dummy (probit); (3) group average payoff (OLS); and 
(4) the dummy for coordination on either action (probit). Marginal effects 
are reported for tobit and probit regressions.

Table 19
First-round differences (fixed- vs. random-matching).

Reference = BI-b Reference = all BI
(1) (2) (3) (4) (5) (6)
B in t0 A after no-B WBA B in t0 A after no-B WBA

BI-b-rand 0.147* 0.00974 -0.126
(0.0803) (0.0399) (0.0827)

all BI-rand 0.0926 -0.0149 -0.0978
(0.0666) (0.0356) (0.0679)

Pseudo R2 0.0576 0.000495 0.0229 0.0149 0.000791 0.00978
N 148 128 148 284 234 284

Notes: Standard errors clustered at the group or matching cohort level are in parentheses; * p < 0.10, 
** p < 0.05, *** p < 0.01.
Probit regressions. Reference category is “BI-b” or all of the BI treatments with fixed matching. Each 
observation is an individual subject in a round. Dependent variables are choice of B in t0 (dummy) and 
choice of A after the no-B message (dummy). Marginal effects are reported.
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