

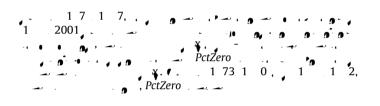
- °o °o °o	0	. ¥	CrossM

(2014) (2014) (2005), (2005), (2007), (2007), (2010)

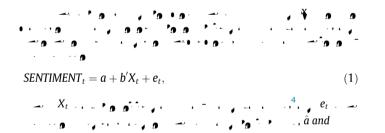
 1
 2

 3
 1

 4
 1


 5
 1

 6
 5


1. Data

(2006)

 (_____) (_____) (_____) (_____) (_____) (_____) (_____) (_____) (_____) •) • • . . (1 6) (2006) (2 ـــ (1 6) لــ •).../ · · · · · / (2006). **b**),. · · · · · · · · · · · · · · · · (1 7), (1 2) (Tbill), ·, (• •,), 9...

2. Decomposition of the Sentiment Index

		• <i>n</i> -	_ t,	Dx
SENTIMENT _t a + b'(X _t g + t, SENTHAT (), SENTHAT (), (), (), (),	sentiment _t	X _t SENTRES PctZero)	(_),	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	0 ''	P ● · P ⁻ ., ·	,	
Panel A. Regression of Sent	iment on risk/business rycle variab	les		
13 variables				
۰.	-0.71	0.26	-0. 5	0.00%
- •	-0.06	0.37	-0.46	0.34%
•	-0.12	0.3	-0.76	0.35%
n ·	0.04	0.23	1.03	-0.23%
4	-0.01	0.3	-0.4	0.04%
	-0.13	0.05	-2.16	1.10%
1 6	0.17	0.3	0.72	0.7 %
Tbill	0.4	0	4.	3.4 %
•	0.11	0.42	0.27	0. %
	0.4	0.03	3.05	-2.55%
	-0.27	0.2	-0. 5	3.0 %
	-0.01	0.24	-1.01	0.20%
· 9	0	0.41	-0.3	-0.23%
PctZero	-0.06	0.04	-2.	20.13%
•				63.52%
, ● =.>.,				62.56%
2 variables				
· •	-0.1	-2.64	-0. 6	0.00%
Tbill -	0.2	1.3	5.12	23.3 %
PctZero	-0.06	-17.66	-4.36	17. 0%
				41.35%
y ● =.>=.				41.03%

	9	· 0 ·						
			• ,	• 1	SENTIMENT		SENTHAT	SENTRES
Panel B. Summar	y statistics and cor	relations of sentir	nent components					
SENTIMENT	0.00		1.00	0.	1.00			
SENTHAT	0.00		0. 0	0.6	0. 0		1.00	
SENTRES	0.00		0.60	0. 1	0.60		0.00	1.00
	1	•	í.		l +1	• +1	í +1	+1
Panel C. Correlat	ions between SENTI	HAT and SENTRE	with contemporaneo	us and future Fama a	nd French factors			
SENTHAT _t	-0.0	-0.0	0.04	0.02	-0.0	-0.10	0.05	0.02
p	0.04	0.0	0.3	0.73	0.06	0.02	0.26	0.57
SENTRESt	0.00	-0.04	0.07	-0.01	-0.01	-0.03	0.03	-0.02
p	0.	0.34	0.0	0.0	0.7	0.4	0.43	0.63

PctZero), (2007)-,, 9, Ĵ (2005), . (2003), • (200), (2011), ٠., ۰, 'n 1 ₽ 4 0'-. . •

 **
 **
 **
 **
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</t

⁶ 13 _ PctZero-13 99 Ť 2 - 13₀ 'o o 9 0 **99 ¥** 1 ny n n --- - 9 Ť •• . • •

explanatory power. Given that the SENTHAT(SENTRE)Sfrom the 13-variable and 2-variable systems are 97% (95%) correlated, we report our future results using the estimates from the 13-variable system. The results using the 2-variable system are qualitatively similar, and we discuss main results using the 2-variable system in Section 5.

In Panel B of Table 2 we report the summary statistics of the two orthogonal components, SENTHATand SENTRESNote that the sentiment index is constructed to have a mean of zero and volatility of one. SENTHATby construction, shares the same mean as the dependent variable, and SENTRESy debnition, has a mean of zero. All series remain highly persistent with autocorrelations above 90% for both SENTHATand SENTRESInterestingly, we observe that SENTHATis more strongly related to the sentiment index with a correlation coefficient of 0.80 when compared to the 0.60 correlation between the sentiment index and SENTRES

We obtain four widely used pricing factors from Kenneth FrenchÕs website: the market excess return (MKT), the size factor (SMB), the value factor (HML) and the momentum factor (WML). To examine how the two sentiment components are related to Fama and French factors, we report correlations between SENTHATSENTRES and contemporaneous and future Fama and French factors in Panel C of Table 2. SENTHATS signibcantly negatively correlated with the contemporaneous and future excess market return with a correlation coefbcient of 0.09 (with p-value of 0.04) and 0.08 (with p-value of 0.06), while SENTRESs not signibcantly correlated with either

	•	•	<u> </u>	0			•	•	<u> </u>	0	
• . •	.	• -	t ,	• -	t ,	• • • • • • •	• •	• -	t	• -+	t ,
	-0.14	-0.03	-0.1	-0.14	-1.17	•	0.5	1.37	2.70	0.71	2.75
() Þ	-0.20	-0.0	-0.70	0.00	0.06	: / 0	0.70	0.	2.6	0.7	5.25
• /	-0.64	-0.71	21	-0.51	2	• · ·	0.	1.13	3. 2	0.3	3.50
▶/ ▶	-0.17	-0.17	-1.27	-0.0	-0. 3		0.63	0.74	4.21	0.53	3.77
• •	-0.34	-0.40	-4.66	-0.23	-2. 1	•	0.42	0.60	3.7	0.27	1.
00 Þ/	0.13	0.27	1.71	0.07	0.63	PP = ()	0.5	0.6	2.51	0.47	1.63
• • /	0.43	0.32	1.3	0.53	3.76	4	0.65	0.71	3.7	0.66	3.
•	0.1	-0.0	-0.41	-0.05	-0.32	3	1.56	1.65	7.66	0.3	2.67
· · · ·	-0.24	-0.34	-3.71	-0.1	-2.	• 0	0.40	0.3	1.2	0.52	3.75
	-0.11	-0.06	-0.67	-0.05	-0.5	•	0.6	1.06	4.0	0.55	2.70
	-0.34	-0.43	-4. 2	-0.2	-5.20	1	0.75	0.1	3.5	0.50	2.61
• / • •	-0.30	-0.27	-4.46	-0.23	-5.2	o · o	0.77	0.	5.4	0.56	6.03
, , ,	-0.3	-0.30	-1.4	-0.15	-1.72						
1	0.5	1.03	6.0	0.	.61						
1 1	0.64	0.63	7.34	0.6	.26						
1	0.31	0.40	3.24	0.31	4.45						

(2)

$$R_t = a + bSENTMENT_{t-1} + u_t$$
.

$$R_{t} = a + bSENTHAT_{t-1} + cSENTRES_{t-1} + u_{t},$$

$$R_{t} = a + bSENTHAT_{t-1} + cSENTRES_{t-1} + u_{t},$$

$$R_{t} = a + bSENTHAT_{t-1} + c'FACTOR_{t} + u_{t},$$

$$R_{t} = a + bSENTIMENT_{t-1} + c'FACTOR_{t} + u_{t},$$

$$R_{t} = a + bSENTHAT_{t-1} + cSENTRES_{t-1} + d'FACTOR_{t} + u_{t}.$$

$$(4)$$

$$R_{t} = a + bSENTHAT_{t-1} + cSENTRES_{t-1} + d'FACTOR_{t} + u_{t}.$$

$$(5)$$

. . . . (1) , . . (3) , ¥. P ... v. , . (2012), (2006), ÷ . · · · · · · ▶ . . (3) , '1 t-1, ., (4), t, , 🛥 -----9 -▶..(3), (4), 1 -- 1 0 • - 1 $R_t = a + bSENTHAT_{t-1} + cSENTRES_{t-1} + d'FACTOR_{t-1} + u_t.$ (6)

▶. (5), ▶. 1 ▶ . (2), ., (2014) ¥ . • . . 1 . (2012), 1 . 1 'O 4 **¥** (2014) 'o ' .

SENTHAT, SENTRES. • (1) 1 ., 100,000 , P . SENTHAT , SENTRES, . • _ ¥, __ SENTHAT , . • SENTRES . . - · · · 100,000 . . . • p-p-_. . '9 SENTHÃT 'n 9 SENTHAT, SENTRES SENTRES . _),• t. 🖡 (. '0 SENTHAT **)** p-_. '0 ۰. SENTHAT . 'n SENTHAT.

3.3. Predictive regression results on spread portfolios

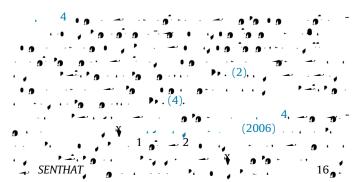


Table 4 $-SENTHAT, SENTRES, -SENTHAT, SENTRES, -SENTHAT, SENTRES, -SENTHAT, -1 + CSENTRES, -1 + dMKT_t + eSMB_t + fHML_t + gWML_t + gWML$

	• 9 9 7	D . D . 4 .	10		10 00.	· • • •	10		• <u>0</u> 0 0 • •			
	- b 'o	9					(),	0 0				
	SENTIME	ENT	SENTHAT		SENTRES	SENTIMEN		NT	NT SENTHAT		SENTRES	
	o * .	P	o [†] .	1	o * .	1	o *•	P	o *•	1	o * .	• • •
Panel A. Predicting	, spread portj	folio returns d	at t									
-	0.52	0.01	0.62	0.01	0.36	0.13	0.23	0.06	0.24	0.05	0.1	0.14
(0.37	0.01	0.56	0.00	0.04	0.43	0.20	0.06	0.31	0.00	-0.04	0.3
▶ /	-0.16	0.04	-0.10	0.15	-0.26	0.02	-0.10	0.23	0.00	0.4	-0.20	0.03
▶/ ▶	0.3	0.02	0.4	0.01	0.24	0.16	0.25	0.03	0.35	0.02	0.21	0.16
	-0.07	0.24	-0.01	0.46	-0.17	0.13	-0.06	0.30	0.06	0.32	-0.12	0.20
● ▶/	0.3	0.03	0.41	0.03	0.35	0.12	0.14	0.16	0.04	0.41	0.1	0.16
• • /	-0.23	0.13	-0.21	0.1	-0.26	0.1	-0.03	0.44	0.03	0.44	-0.11	0.33
•	-0.3	0.00	-1.06	0.00	-0.41	0.17	-0.36	0.02	-0.4	0.01	-0.22	0.20
ر سه ا ۱۰	-0.3	0.00	-0.43	0.00	-0.2	0.05	-0.24	0.01	-0.22	0.01	-0.20	0.04
· · · ·	0.31	0.01	0.42	0.00	0.12	0.26	0.1	0.06	0.2	0.02	0.0	0.32
	-0.34	0.00	-0.41	0.00	-0.23	0.0	-0.20	0.03	-0.21	0.01	-0.16	0.06
	0.1	0.01	0.30	0.00	-0.03	0.40	0.10	0.12	0.21	0.00	-0.05	0.2
•	0.4	0.04	0.6	0.01	0.14	0.34	0.36	0.15	0.5	0.03	0.15	0.34
1	0.13	0.21	0.02	0.46	0.31	0.15	0.11	0.2	-0.01	0.4	0.23	0.1
1 1	-0.14	0.0	-0.27	0.01	0.0	0.2	-0.0	0.2	-0.1	0.06	0.07	0.31
1	0.27	0.03	0.30	0.04	0.22	0.16	0.1	0.10	0.1	0.12	0.16	0.21
1	1.24	0.03	1.23	0.03	1.26	0.06	0.5	0.06	0.55	0.17	1.53	0.01
	0.73	0.04	0.66	0.07	0.4	0.04	0.56	0.02	0.35	0.0	1.12	0.00
14 -	0.4	0.01	0.71	0.03	1.21	0.01	0.71	0.03	0.46	0.11	1.32	0.00
	0.50	0.02	0.40	0.06	0.65	0.02	0.42	0.04	0.25	0.15	0.56	0.02
•	0.42	0.03	0.3	0.06	0.4	0.05	0.26	0.0	0.15	0.20	0.35	0.06
PP = 1 - 1	0.34	0.20	0.32	0.22	0.3	0.20	0.23	0.34	0.20	0.31	0.30	0.25
1	0.50	0.03	0.73	0.00	0.0	0.3	0.46	0.06	0.63	0.01	0.05	0.44
3	0.23	0.16	0.2	0.17	0.15	0.36	0.1	0.23	0.21	0.24	0.13	0.37
• •	0.36	0.07	0.26	0.17	0.52	0.05	0.45	0.05	0.26	0.17	0.56	0.04
	0.36	0.17	0.40	0.16	0.31	0.24	0.34	0.1	0.41	0.10	0.24	0.24
1	0.05	0.42	0.13	0.33	-0.07	0.41	-0.04	0.43	0.11	0.33	-0.13	0.33
o · o	0.45	0.01	0.46	0.02	0.42	0.05	0.33	0.07	0.2	0.0	0.33	0.07

	- · · o ·							(),, <u> </u>						
	SENTIME	NT	SENTHAT		SENTRES		SENTIME	NT	SENTHAT		SENTRES			
	o *.	P	o [†] .	1	o * .	1	o * .	1	o ¹ .	P	o ¹ .	P		
Panel B. Predicting	short portfol	io returns at	t											
	-0.6	0.01	-1.10	0.01	-0.25	0.33	-0.20	0.05	-0.22	0.05	-0.04	0.40		
• / •	-0.53	0.03	-0.7	0.01	0.0	0.42	-0.06	0.2	-0.13	0.14	0.20	0.0		
• /	-0.61	0.03	-0.	0.01	0.06	0.45	-0.03	0.40	-0.15	0.16	0.20	0.11		
▶/ ▶	-0. 7	0.01	-1.15	0.00	-0.20	0.36	-0.22	0.05	-0.32	0.02	-0.02	0.47		
	-0.71	0.02	-0.	0.01	-0.07	0.45	-0.11	0.20	-0.22	0.10	0.0	0.32		
	-0. 0	0.01	-1.15	0.01	-0.30	0.30	-0.21	0.05	-0.21	0.07	-0.06	0.35		
• • /	-0.6	0.02	-0.	0.01	0.02	0.4	-0.14	0.24	-0.26	0.07	0.15	0.22		
•	-0.13	0.26	-0.17	0.25	0.11	0.37	0.13	0.15	0.20	0.07	0.16	0.17		
· · ·	-0.41	0.06	-0.57	0.03	0.05	0.45	0.07	0.23	0.06	0.26	0.16	0.07		
	-0.71	0.02	-0.	0.01	-0.07	0.45	-0.11	0.20	-0.22	0.10	0.0	0.32		
	-0.42	0.07	-0.5	0.03	0.03	0.47	0.07	0.30	0.06	0.31	0.15	0.12		
• 1	-0.61	0.03	-0.	0.01	0.06	0.45	-0.03	0.40	-0.15	0.16	0.20	0.11		
	-0.75	0.01	-1.00	0.01	-0.16	0.3	-0.32	0.1	-0.44	0.0	-0.0	0.41		
1	-0.74	0.01	-0. 1	0.01	-0.27	0.30	-0.14	0.10	-0.11	0.17	-0.04	0.3		
1 1	-0.47	0.05	-0.61	0.03	-0.05	0.46	0.05	0.33	0.07	0.2	0.12	0.21		
1	-0.74	0.01	-0. 1	0.01	-0.27	0.30	-0.14	0.10	-0.11	0.17	-0.04	0.3		
	-1.73	0.01	-1.	0.01	-1.0	0.14	-0. 7	0.03	-0.73	0.06	-1.53	0.00		
:	-0.5	0.03	-0.	0.04	-0. 2	0.14	-0.52	0.02	-0.42	0.07	-1.03	0.00		
	-0.7	0.02	-0.5	0.05	-1.03	0.0	-0.56	0.05	-0.41	0.13	-1.15	0.01		
	-0.76	0.01	-0. 1	0.02	-0.6	0.0	-0.42	0.01	-0.40	0.02	-0.46	0.02		
•	-0.62	0.03	-0.77	0.02	-0.37	0.22	-0.23	0.07	-0.34	0.03	-0.15	0.23		
P	-0.4	0.02	-1.01	0.02	-0.54	0.20	-0.27	0.1	-0.3	0.0	-0.17	0.2		
4	-0.77	0.01	-0. 4	0.01	-0.4	0.16	-0.37	0.05	-0.47	0.02	-0.24	0.17		
1	-0.	0.01	-1.11	0.01	-0.52	0.21	-0.24	0.14	-0.42	0.07	-0.16	0.32		
-0	-0.51	0.04	-0.3	0.12	-0.72	0.05	-0.25	0.07	-0.0	0.33	-0.56	0.01		
	-0.3	0.01	-0. 7	0.01	-0.5	0.14	-0.40	0.02	-0.47	0.01	-0.30	0.0		
1	-0.70	0.01	-0. 7	0.01	-0.42	0.1	-0.25	0.13	-0.3	0.06	-0.16	0.27		
	-0.3	0.01	-0. 4	0.01	-0.65	0.11	-0.34	0.02	-0.3	0.02	-0.35	0.04		
<u> </u>								=			(continued on			

- • • p-... 1 1 - 0 3. · . •

(2006) -9 • '0 , SENTHAT SENTRES). . . (2006). SENTRES.

, SENTHAT, (2006) SENTHAT · · · **)** (1 . 🛥 . 0.0 9 (2006)' 2001 . . . 2010, ، س*ـ* 9~ 9 (2006) 16**. "**. " · · · · SENTRES, SENTHAT - 0 0 ···· 0 ----· · · 0⁻ · · 99 ... - - 0

and the second

(2006).⁷ – 12 – 12 ···· (2012) _ 12, ₀ r. *o 4.0- 0 SENTRES SENTHAT ·, • 0 [•]0 0 , . (200) ۶, . SENTHAT • - '0 1 ۶, SENTHAT 9 , ____, ___ SENTHAT . . . 9 - 4

3 SENTHAT . SENTHAT 2 , SENTHAT , _ SENTRES (2006). 5. . _____

2 SENTHAT SENTRES SENTHAT SENTHAT SENTHAT SENTHAT SENTHAT SENTHAT SENTHAT

3.4. Predictive regression results on long and short portfolios

10 . .

·· * 0

2012 SENTHAT . SENTRES • 25 SENTHAT SENTRES 1 1 SENTHAT SENTRÉS. وينسرو t 1 1 ₽. SENTRES , SENTHAT 6, 2, 1(6, 1-SENTHAT, t 1

SENTRES,

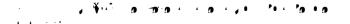
SENTHAT (2006) 16 16 16 16 16 (2006) 16 (2006) (2012)

4. The fundamentals index

. .

, 13 **,** , , - · , ¥. * , ¥, · 0 · 0 · 0 · · · · · **· · · · ·** . -0 0 9 _13 س . . 10 , -1 1 '0 . 0 9 ~ . . ٠., 9 •• . IJ - 6 'o o **,**• ... • 9 . 'o , • 'o • o 9 . 9 -... •

	• 1		• 1		• 2		• 2	
	• 94	-		¥ · ,	•	D-y	,	N
Panel A. Summary statistics for the fundan	nentals indices							
			25.62%				17.47%	
	0.06		0.01%		0.60)	3.26%	
. •	0.35		0.01%		-0.2	26	0.03%	
	0.26		0.03%		0.01		0.00%	
•	0.20		0.03%		-0.0	02	0.00%	
	0.13		0.01%		0.05	5	0.01%	
	-0.11		0.00%		-0.0	05	0.00%	
-	0.45		0.04%		-0.0		0.00%	
(·	-0.01		0.00%		0.47	7	1.70%	
	-0.1		0.04%		0.51		1.00%	
	0.45		5.01%		0.1		3.13%	
• • •	0.04		0.15%		0.15	5	6.01%	
·)	-0.2		1 .16%		0.04	ł	1.1 %	
PctZero	0.46		2.14%		0.17	7	1.14%	
	9	9	p, .		9	· 9	<i>p</i> , -	
SENTIMENT	-0.07		0.12		0.04		0.3	
SENTIMENT X	-0.11		0.01		0.05)	0.21	
2			2	-g - 1 g 'g	<u>0</u> ·		2	<u>0</u> ·
• 1		• 2	• 1	l	• 2		• 1	• 2
Panel B. Predictive power of the fundamen	tals indices for futu	ıre stock retı	irns					
• 0		3	0		21		1	23
(), , , , , , , 0		4	0		1		7	3
	•		2	o ¹ o o	2 9			
,	• 1	• 2		• 1	• 2	,	• 1	• 2
Panel C. Horse race between the fundamen	ntals indices and th	e sentiment i	ndex					
20	0	5	25	0	26	16	3	26
(), , , , 1 3	0	3	11		1	3	20	2


4.1. Constructing the fundamentals index

`^ (2006) ., 1 ~6 . . • ،_ 13 س 1 . -1 13 _, 13 1 '9 . 13 🎝 'n 9 1 (2006) -90

1) 26% 13 , 'n 9 2) 'n 17% _ 13 1 13 1) 9 11 9 1 1 1 9 ¥ **'**) 04 1 . . . 1 _____13 ___ 1-1 . 9 • 9 _ 4 1 1 1 1

6 n'i 1 13 2, 1. 3 1 2, 1. 'n . 1 - 6, "¥ 13 س - -'n 1 .

. ¥ 1 4 . ¥ 1 7 1, ¥0 6 - 11 0.01 -0.11 (-0.07)) . • (0.12). 'n 'n 1 1 1 1 1 1 9 1 1 1 Ś 1 1

4.2. Predicting future stock returns

o*• , *				.	, ¥, o	۰ ·
, ,	٠ -	· · · · · ·	, .9		·	. •

5. Robustness checks and further discussion

5.1. The 2-variable System vs. the 13-variable System¹⁰

PctZero. 1 . 2.1. 2.0% 13 SENTHAT 13 26, SENTHA 26 2 RFS SËNTHÅT SENTRES, SENTHAT SENTHAT , **SENTRES** 2-_, **.** 13 SENTHAT 11 _. ۰. 4 • •

5.2. Revisit BW principal component analysis¹¹

5.3. Alternative sentiment index: the Michigan consumer sentiment index

•, t-, •, •, SENTHAT, SENTRES _ . `0_0 PctZero. _ 2 . 1. 2010 9 ۰. ۱ 2 2 . - SENTHAT SENTRES SENTHAT SENTRES SENTHAT SENTRES Panel A. Number of significant t-statistics for predicting spread and long/short-leg portfolios, using 13-variable system vs. 2-variable system for decomposition 3 7 13 . . . 16 26 0 17 0 -6 2 ., , 13 26 1 20 0 SENTRES SENTHAT 4922predictivR2bles

5.4. Alternative interest rate and liquidity measures

• . (2005).

5.5. Alternative risk factors

SENTHAT, SENTRES (2015), (2015

6. Conclusion

- - 6 • . . -. . • (2006) · 9 · ¥o∙o¥^o **9** • ~ / ۶,

'o , 9 1 ^

.... '1 '1 1

Acknowledgements

1 0 1). (. • . • 2 ۰ ، ا . . -... '

'n • . 9 . - · · · ٤ -. ~ 9 '= ₁. • .

Appendix A. Supplementary data

_____/, *, , , /10.1016/. , . .2015.10. - 0 001.

References

- and the second second
- ., 2012. ,
- . 2014. 1.1.1.
- · · · · ·
- , **, , , ,** , , , , 2014. , • · · · · · · . .
- 200 ¥ 22,4463 44 2 373 3
- 345.
- $rac{1}{2}$, is given it is a single of $rac{1}{2}$ -
- 43, 661 676 5 227 18.1 6 9 6 Sec. B. Frank 1

- , , ., ., ., ., ., ., ., ., 2010. , - - · · · . . 9 · · · · · · · · · · · · **1 1 1 1**
- 22 (1), 257. 2 7. .

- **a**, 1 **b**, 25, 23 4 **a**, 1 3 **a**, 1 3 **a**, 1 3 **b**, 25, 23 4 **b**, 33, 3 56 **b**, 5, 115, 146 **b**, 1 77, 11 **b**, 1 77,

- ., 2006. . · - - - - - , 1 ιση **η κ**ατ**ια** τη ∞ ∞ το **η**²ε ∛μεση
- , , , , **(** , _ , , 2010.
- 2010. 23, 3401 3436. 2013. 2013. 23, 3401 3436.
- 1 2. 2015. 2,650 705. 3,2011. 100,3 2 401. 200 5
- a segura de la 👔 de sera
- 200 7, 45 72. 2011. 2011. 2006. 1, 14 152. 12, 1113 1141. 200.

- 1151 116
- 146
-

- 2003. , 2003. , 2003. , 2003. , 2003. , 2003. , 2003. , 2005.
- , , , , 2006.

1-41 × 1	., 1 64. 😱 ,		
10 y 10 11	n an an an Ar	1 , 425 442. . , . , . , . , 2012.	
104, 2 3	02.		

.,, 2013	. 60, 474 4 1.	¥ -	•	o oʻ	` 9	 -	• •	
and the source of	,, 2011. . 100, 367, 3–1.			• • -				
	. 100, 507 5 1.			60, 67 1	03.			

104, 2 302.