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Hansen and Jagannathan (1997) have developed two measures of pricing errors for asset-
pricing models: the maximum pricing error in all static portfolios of the test assets and the
maximum pricing error in all contingent claims of the assets. In this paper, we develop
simulation-based Bayesian inference for these measures. While the literature reports that
the time-varying extensions substantially reduce pricing errors of classic models on the stan-
dard test assets, our analysis shows that the reduction is much smaller based on the second
measure. Those time-varying models have large pricing errors on the contingent claims of
the test assets because their stochastic discount factors are often negative and admit arbitrage
opportunities.
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1. Introduction

An asset-pricing model admits arbitrage opportunities for some contingent claims if the model's stochastic discount factor (SDF) is
zero or negative with a positive probability (Hansen and Richard, 1987; Harrison and Kreps, 1979). For example, the SDF of the CAPM,
as a linear function of the return on the market portfolio, can be negative and may thereby admits arbitrage opportunities for an index
option on the market portfolio (Dybvig and Ingersoll, 1982). Linear asset-pricing models are not arbitrage free because their SDFs may
take negative values. When a model admits arbitrage opportunities, derivative securities can be used to generate Jensen's alpha with
respect to the model (Guasoni et al., 2011). Thus a linear model that prices all the test assets correctly can still have pricing errors on
the derivatives of the assets.

Even for portfolios that do not directly contain derivative securities, models admitting arbitrage opportunities for contingent
claims may still give incorrect valuations, according to Black and Scholes (1973), because dynamically managed portfolios can ap-
proximate contingent claims. Fung and Hsieh (1997) present empirical evidence showing the derivative-like behavior of hedge
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funds. Fung and Hsieh (2001) further show that the trend-following strategies used by some hedge funds are akin to a look-back
straddle. Mitchell and Pulvino (2001) demonstrate that the strategies of risk arbitrage funds are similar to an uncovered put. In
addition, they construct stock portfolios based on merger announcements and show that such portfolios also behave like an un-
covered put. Therefore, a model that works well on the test assets may have pricing errors on portfolios that are dynamically con-
structed from the assets (Glosten and Jagannathan, 1994). We therefore should consider pricing errors on all contingent claims or
dynamic portfolios of the assets when evaluating asset-pricing models.

For model evaluation, Hansen and Jagannathan (1997) have developed two measures of pricing errors, referred to as HJ dis-
tances in the finance literature. The first HJ distance is the maximum pricing error on all static portfolios of a given set of assets,
while second HJ distance is the maximum pricing error on all contingent claims on the assets. The difference between the two HJ
distances indicates the additional pricing errors a model can have if contingent claims or dynamic portfolios are added to an em-
pirical test of the model. Since it is difficult to test a model with all possible contingent claims or all possible dynamic portfolios,
the second HJ distance provides a convenient and powerful tool for the evaluation of asset-pricing models.

There have been efforts to develop classic sampling distribution theories for the HJ distances. Hansen et al. (1995) made the
first attempt on both HJ distances. Their sampling distribution theory assumes that the true distance is known and nonzero. This
assumption is inconvenient because most applications do not provide a hypothesis about the magnitude of the distance. In the
specification tests of HJ distances, the null hypothesis is that the distance is zero. Allowing for a nonzero distance, Jagannathan
and Wang (1996) derived an asymptotic sampling distribution theory for the first HJ distance, and Li et al. (2010) did the
same for the second HJ distance. Note that the second HJ distance is a complicated nonlinear function of asset returns and thus
its sampling distribution is far more involved than the distribution of the first HJ distance. Although these sampling distribution
theories allow for testing hypotheses with complicated combinations of the χ-squared distributions, a methodology that is more
convenient for applications and allows for formal inferences on model comparisons will be useful.

We introduce a simulation-based Bayesian inference for the analysis of both HJ distances. Using the Bayesian inference we ob-
tain the joint posterior distribution of the two HJ distances, which is convenient for formal inference in model comparisons. We
also obtain the posterior distributions of many nonlinear measures of interest, such as the ratio of the second HJ distances of two
models in a comparison. The methodology developed in this study allows for the comparison of models based on their pricing
errors on either test assets or contingent claims. More important, we can use the methodology to compare performances of dif-
ferent models in all dynamic portfolios without actually constructing the portfolios. The simulation-based Bayesian inferenceof-
fers two advantages over the classic sampling theory. First, by conducting simulations, we overcome the small-sample bias of the
asymptotic method. Second, based on the posterior distributions, we are able to conduct inference on many interesting measures
for which asymptotic distributions are difficult.

Although the first HJ distance has gained popularity in empirical research, the second HJ distance has not been widely used in
applications. Based on the first HJ distance, many researchers, such as Jagannathan and Wang (1996), Hodrick and Zhang (2001),
and Lettau and Ludvigson (2002), report that time-varying linear models have substantially smaller pricing errors than the CAPM
and consumption-based models. The analyses of these authors are based on only the first HJ distance. The empirical evaluation of
these models in the literature, however, ignores the pricing errors on the contingent claims or dynamic portfolios of the test as-
sets. This concern is especially serious for models whose SDFs often take negative values. According to Dybvig and Ross (1985)
and Glosten and Jagannathan (1994), a model admitting arbitrage for contingent claims is likely to have large pricing errors on
derivative securities on the models' factors. Therefore, the second HJ distance of a model measures the ability of the model to
price dynamic portfolios of the test assets. Our paper, along with Li et al. (2010), seeks to fill that gap in the literature.

Using the simulation-based Bayesian inference of the HJ distances, we investigate whether the pricing errors on contingent
claims or dynamic portfolios substantially affect the evaluation of linear time-varying models. We find that the two HJ distances
are about the same for static single-factor models, but that the two distances are drastically different for time-varying models. If
we evaluate models by the first HJ distance, multifactor and time-varying models have substantially smaller pricing errors than
static single-factor models. However, this result does not hold if we use the second HJ distance, mainly because time-varying
models admit arbitrage opportunities for contingent claims.

The remainder of the paper is organized as follows. In Section 2, we lay out the econometric framework by reviewing the mea-
sures of pricing errors and describe the simulation-based Bayesian inference in Section 3. Then, we present the test assets and the
models under examination in Section 4. Empirical results in Section 5 show how pricing errors on contingent claims affect model
evaluation and comparison. We conclude in Section 6.

2. Measures of pricing errors

Suppose there are n assets. We use a n×1 vector rt to denote the asset returns during period t. Suppose there are k observable
factors and l state variables in the economy. At the end of period t, the vector of the factors is ft,edand the vector of the state vari-
ables is xt. Let zt=(r′t, f′t,x′t)′ and assume that zt follows a stationary stochastic process with a finite second moment.

An asset-pricing model is represented by its stochastic discount factor, which is denoted by mt. We assume mt∈L2, where L2 is
the space of random variables with finite second moments. If the asset-pricing model holds exactly on the assets, the SDF of the
model satisfies

Et−1 mtrt½ � ¼ 1n; ð1Þ
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where Et−1[⋅] is the expectation under the conditional information in period t-1, and 1n is an n×1 vector of 1 s. Under uncondi-
tional expectations, the moment restriction of the pricing model is

E mtrt½ � ¼ 1n; ð2Þ

where E[⋅] is the unconditional expectation. Following Hansen and Jagannathan (1997), we define the set of all SDFs that satisfy
the pricing restriction (2) as

M ¼ mt : mt∈L2
; E mtrt½ � ¼ 1n

n o
; ð3Þ

where L2 is the space of random variables with finite second moments. If mt is the SDF of an equilibrium model, it should not be
negative because the SDF is the marginal rate of substitution of consumption between today and tomorrow. Following Hansen
and Jagannathan again, we define

Mþ ¼ mt : mt∈L2
;mt ≥ 0; E mtrt½ � ¼ 1n

n o
: ð4Þ

This is the set of nonnegative SDFs that correctly values the scaled returns on average. We assume that M+ is nonempty. This as-
sumption holds if the observed prices of the scaled portfolios do not allow arbitrage opportunities.

Let yt be the SDF of an asset-pricing model that we want to evaluate empirically. In general, the prices assigned by yt may not
be consistent with Eq. (2). Hansen and Jagannathan (1997) introduce two measures of pricing errors. The first measure is the
maximum pricing error on the static portfolios of the assets:

δ ¼ max
ht∈P;‖ht‖¼1

min
mt∈Mþ

E ytht½ �−E mtht½ �j j
� �

; ð5Þ

where P is the space of linear combinations of asset returns. The restriction ‖ht‖=1 controls the second moment of ht in the max-
imization. The second measure, denoted by δ+, is the maximum pricing error in all contingent claims of the assets:

δþ ¼ max
ht∈L2 ;ht¼1

min
mt∈Mþ

E ytht½ �−E mtht½ �j j
� �

: ð6Þ

The difference between the two measures is the payoff space: δ uses P whereas δ+ uses L2. Thus, the first HJ distance δ ignores the
pricing errors on the contingent claims outside P. Hansen and Jagannathan show that these measures of pricing errors can be
calculated using the following formulas:

δ ¼ min
m∈M

jjy−mjj and δþ ¼ min
m∈Mþ

jjy−mjj: ð7Þ
It is clear that δ≤δ+.

HJ distances are related to Jensen's alpha, which is a common measure of pricing errors. Since alpha is the expected return of a
portfolio that neutralizes the risk of the factors in a model, investors want to maximize the Sharpe ratio of the factor-neutral port-
folio. Guasoni et al. (2011) Theorem 1 shows that the maximum Sharpe ratio of the factor-neutral portfolios is Smax=(1+rf)δ,
where rf is the risk-free interest rate. If the volatility of the factor-neutral portfolio is constrained to be σ, the maximum alpha
of the portfolios is αmax=(1+ rf)δσ. Since the gross return of the risk-free asset is approximately equal to 1, we can roughly in-
terpret the first HJ distance as the maximum Sharpe ratio of the factor-neutral portfolios. We can also roughly interpret the first HJ
distance as the maximum alpha of all the factor-neutral portfolios with unit volatility (σ=1). If we expand the portfolios to in-
clude all the contingent claims on the test assets, the maximum Sharpe ratio and alpha of the factor-neutral portfolios are Smax

+ =
(1+rf)δ+ and αmax

+ =(1+rf)δ+σ, respectively. The interpretation of the second HJ distance in terms of the Sharpe ratio and alpha
is similar to the first HJ distance.

In an empirical evaluation of an asset-pricing model, the model often has unknown parameters. A general form of the prespecified
SDF is yt=g(θ, ft,zt−1). Note that we allow the SDF in a specified model to depend on lagged variables. The functional form g(⋅,⋅,⋅) is
prespecified, and the vector of parameters, θ, is unknown but belongs to a set Θ. Therefore, the HJ distances of yt are functions of θ and
should be denoted by δ(θ) and δ+(θ). Researchers usually choose parameters to minimize pricing errors. We define δ=minθδ(θ) and
δ+=minθδ+(θ). By θ̂ and θ̂þ, we denote the solutions to the two minimization problems, respectively. It follows that

0 ≤ δþ θ̂þ
� �

−δ θ̂þ
� �

≤ δþ−δ ≤ δþ θ̂
� �

−δ θ̂
� �

: ð8Þ

Therefore, the difference δ+−δ is always nonnegative and serves as a lower bound of δþ θ̂
� �

−δ θ̂
� �

, which measures the model's
additional pricing errors on the contingent claims beyond the static portfolios of the test assets.

Given an SDF yt, the arbitrage opportunity is related to the probability that yt takes negative values, i.e., Prob{ytb0}. When a set



negativity rate of yt=g(θ, ft,zt). The negativity rate π indicates the probability that yt will be negative after choosing the parame-
ters θ to minimize yt 's distance to M.

It is necessary to point out that the focus of this paper is the HJ distances developed by Hansen and Jagannathan (1997), not
the HJ bounds developed by Hansen and Jagannathan (1991). The latter can be characterized as a special case of the former only if
all SDFs happen to have the same expected value. HJ distances are different from HJ bounds: the former focus on the pricing er-
rors, whereas the latter focus on the volatility of the SDF. HJ bounds control for the expected value of the SDFs in a comparison of
the volatilities. Since HJ distances are the subject of study in this paper, we should not restrict the expected values of the SDFs in a
comparison of the maximum pricing errors. Instead, we need to obtain information about the expected values from data. Since
the gross return on Treasury bills contains information about the expected value of the SDF, it is therefore important to include
the gross return on Treasury bills in the analysis of HJ distances.

3. Simulation-based Bayesian inference

The basic idea of our simulation-based Bayesian inference is as follows. We assume that zt follows a general stochastic process,
depending on some unknown parameters Ψ, for which we specify a noninformative prior distribution. The likelihood of the data
is the probability of Z conditioning on Ψ, denoted by p(Z|Ψ). We want to obtain random draws from the posterior distribution of
the parameters given Z, denoted by p(Ψ|Z), and achieve this by using the Markov Chain Monte Carlo (MCMC) method. For a given
set of SDFs in the form of yt=g(θ, ft,zt−1), the distribution of zt conditioning on parameters Ψ should determine the negativity
rates and HJ distances. That is, Ψ determinesπ, δ, and δ+ for the given form of SDFs. Therefore, the random draws from the pos-
terior distribution of Ψ allow us to calculate the random draws from the posterior distributions of π, δ, and δ+. The posterior dis-
tributions, p(π|Z), p(δ|Z), and p(δ+|Z), can be estimated from the random draws and are all we need for the empirical analysis. The
rest of this section details the idea just described.

We assume that zt follows a vector autoregressive (VAR) process.1 That is,

zt ¼ C þ Azt−1 þ εt ; εt∼N 0m;Ωð Þ; ð9Þ

where m=n+k+ l is the dimension of vector zt, and Ω is an m×m positive definite matrix. The noise term εt is independent
across time. Consequently, the unconditional distribution of zt is a normal distribution with a mean equal to μ and a variance
equal to Σ. The mean and variance are given by

μ ¼ Im−Að Þ−1C ð10Þ

vec Σð Þ ¼ Im2−A⊗A
� �−1vec Ωð Þ; ð11Þ

where “vec” converts a matrix to a vector by stacking all the columns. The vector vt=(rt, ft,zt−1)′, which is necessary for the cal-
culation of HJ distances, is linearly related to zt−1 and εt in the following way:

vt ¼ ~C þ ~Azt−1 þ Dεt ; ð12Þ

for some vector ~C and matrices Ã and D. Therefore, the unconditional distribution of vt is normal, and the mean and variance are,
respectively, ~μ ¼ ~C þ ~Aμ and ~Σ ¼ ~AΣ~A ′ þ DΩD′.

The unknown parameters in the data-generating process (9) are the initial value z0, the coefficient B=(C,A)′ in the autore-
gressive regression, and the variance Ω of the noise term. Let Ψ=(z′0,vec(B)′, vech(Ω)′)′, which is the vector of parameters in
the VAR process of zt. (Here, “vech” converts the upper triangle of the symmetric matrix Ω to a vector.) We have T observations
on zt, and the set of observed data is Z=(z1,⋯,zT)′. We treat z0 as part of the unknown parameters because z0 is not in our ob-
served data Z.

For the purpose of computation, Hansen and Jagannathan (1997) show that the square of the first HJ distance can be written as
the weighted average of squared pricing errors. Given SDF yt=g(θ, ft,zt−1), we have

δ2 θð Þ ¼ E g θ; f t ; zt−1ð Þrt−1n�′ E rtr
′
t

h i� �−1
E g θ; f t ; zt−1ð Þrt−1n½ �:

�
ð13Þ

If g is a linear function, the above formula allows us to calculate δ(θ) analytically for the given Ψ, because we can calculate
the expectations in (13) analytically. If g is a nonlinear function, we must calculate the expectations numerically as described
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later. In order to calculate the second HJ distance, we can use the following formula, which is obtained by applying an equa-
tion for δ+ derived by Hansen and Jagannathan:

δ2
þ θð Þ ¼ max

λ∈Rn
E g2 θ; f t ; zt−1ð Þ− g θ; f t ; zt−1ð Þ−λ′rt

h iþ� �2
−2λ′1n

� 	
; ð14Þ

where Rn is the space of n×1 real vectors. The function [⋅]+ is defined as [x]+=x if x≥0 and [x]+=0 if xb0. In Eq. (14), we cannot
analytically calculate the expectation for the givenΨ. In addition, the maximization in δ+(θ) must be computed numerically.

Because we can calculate the expectations approximately, we can obtain approximations of HJ distances. Since the uncondi-
tional distribution of vt is normal and has mean ~μ and variance ~Σ, we can generate independent draws of vt from the unconditional
distribution. Then it is easy to compute HJ distances. Let the independent draws be v(j)=(r(j), f(j),z(j))′ for j=1,⋯, J. For a set of
given parameters θ and a given function g in the given model yt=g(θ, ft,zt−1), we generate independent draws of y(j) by letting
y(j)=g(θ, f(j),z(j)).

We approximate δ(θ) using the formula

δ2 θð Þ ¼ Ê J y jð Þr jð Þ−1n�
′
Ê J r jð Þr jð Þh i� �−1

Ê J y jð Þr jð Þ−1n

h i
;

�
ð15Þ

where Ê J ⋅½ � is defined as J−1∑ j= 1
J [⋅] and J is a large integer. Similarly, we can approximate δ+(θ) using the formula

δ2
þ θð Þ ¼ max

λ∈R~n
Ê J y jð Þ� �2− y jð Þ−λ′r jð Þh iþ� �2

−2λ′1n

� 	
: ð16Þ

The convergence of the approximation can be established by the law of large numbers, and the precision of the approximation
can be assessed by applying the central limit theorem. Note that the approximation can be arbitrarily precise by making J large.
The two HJ distances δ and δ+ can then be obtained by minimizing δ(θ) and δ+(θ) over all the choices of parameters θ. Using a
simulation approach, we can also approximate the negativity rate using the formula

π ¼ lim
J→þ∞

Ê J I− g θ̂; f jð Þ
t ; z jð Þ

t−1

� �h ih i
; ð17Þ

where I−[x] equals 1 if xb0 and 0 otherwise, and θ̂ minimizes δ(θ).
We assume the following standard noninformative prior distribution for Ψ in the data-generating process (9). The prior dis-

tributions of the three parts of Ψ are independent; i.e.,

p Ψð Þ ¼ p z0ð Þp Bð Þp Ωð Þ; ð18Þ

where p(z0) and p(B) are proportional to constants, and p(Ω) is proportional to |Ω|− (m+ 1)/2. The conditional structure of the pos-
terior distribution is

z0 B;Ω; Z∼N A−1 z1−Cð Þ;A−1ΩA′−1
� �


 ð19Þ

Ω z0; Z∼IW TΩ̂ z0ð Þ; T−1;m
� �


 ð20Þ

vec Bð ÞjΩ; z0; Z∼TruncatedN vec B̂ z0ð Þ
� �

;Ω⊗ X z0Þ′X z0ð Þ
� �−1

� �
;

�
ð21Þ

where IW is the inverted Wishert distribution and the functions B̂ z0ð Þ, Ω̂ z0ð Þ, and X(z0) are defined as

X z0ð Þ ¼ 1; z′0Þ
′
; 1; z′1Þ

′
; ⋯; 1; z′T−1Þ

′
� �′���

ð22Þ

B̂ z0ð Þ ¼ X z0Þ′X z0ð Þ
� i−1

X z0Þ′Z
��

ð23Þ

Ω̂ z0ð Þ ¼ 1
T

Z−X z0ð ÞB̂ z0ð Þ�′ Z−X z0ð ÞB̂ z0ð Þ
h i

:
h

ð24Þ

The normal distribution of vec(B) is truncated because the norm of the eigenvalues of A must be less than 1 for the VAR to be
stationary.

It is analytically difficult to derive the posterior distribution of Ψ, and it is unknown how to derive the posterior distribution of
the HJ distances δ and δ+. The Markov Chain Monte Carlo (MCMC) simulation method provides a way to estimate the posterior
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distributions numerically. To estimate the posterior distributions of negativity rates and HJ distances, the MCMC procedure is as
follows.
1. Start from an arbitrary z0

(0).
2. For i=1,⋯,N0+N, do the following:

(a) Obtain the ith sample of VAR parameters:
• Draw Ω(i) from IW TΩ̂ z i−1ð Þ

0

� �
; T−1;m

� �
,

• Draw vec(B(i)) from

truncatedN vec B̂ z i−1ð Þ
0

� �� �
;Ω ið Þ⊗ X z i−1ð Þ

0 Þ′X z i−1ð Þ
0

� �� i−1
� �

:

�

• Draw z0
(i) from N([A(i)]−1(z1−C(i)), [A(i)]−1Ω(i)[A(i) ′]−1).

(b) Obtain the ith sample of the unconditional mean and variance of zt:

μ ið Þ ¼ Im−A ið Þ
� �−1

C ið Þ

vec Σ ið Þ
� �

¼ Im2−A ið Þ⊗A ið Þ
� �−1

vec Ω ið Þ
� �

:

(c) Obtain the ith sample of the unconditional mean and variance of vt:

~μ ið Þ ¼ ~C ið Þ þ ~A ið Þμ ið Þ
~Σ ið Þ ¼ ~A ið ÞΣ ið Þ ~A ið Þ0 þ DΩ ið ÞD′

;

where ~C ið Þ, Ã(i), and D are constructed from C(i) and A(i) in the same way as ~C , Ã and D from C and A in Eq. (12).
(d) Calculate the ith samples, δ(i), δ+

(i), and π(i), with the help of Eqs. (15)–(17).
3. Discard the first N0 samples.
4. Approximate the posterior distributions of HJ distances, the negativity rates, and the model parameters by the distribution of

the samples {δ(i)}i= 1
N , {δ+

(i)}i= 1
N , and {π(i)}i= 1

N . These random draws can be used to obtain the posterior probability distribution
of δ, δ+ and π. The mean, standard deviation, median, and other statistics of the posterior distributions can be estimated by
their sample analog.

The approximation of the posterior distributions is more precise if the number of simulations, N, is larger. We choose N=10,000
for this analysis. We discard the first N0 simulations as the usual MCMC practice to help the distribution of the draws converge to
the posterior distribution. We choose N0 to be 1000.

In this simulation-based Bayesian approach, it is straightforward to conduct formal statistical inference on the comparison of
the two HJ distances and the comparison of two different models. To compare the two HJ distances of a given model, we can ex-
amine the posterior distribution of the absolute difference, δ+−δ, or the relative difference, δ+/δ−1, of the two HJ distances. To
compare two models based on the second HJ distance, for example, let δ+

A and δ+
B be the second HJ distance for the SDFs ytA and yt

B,
respectively. Suppose the question is whether ytB is an improvement over ytA because of its smaller pricing errors. We can examine
the posterior distribution of the absolute improvement, δ+

A −δ+
B , or the relative improvement, 1−δ+

B /δ+
A .

4. Asset pricing models and data

Because the SDFs of linear asset-pricing models can be negative, the pricing errors on the contingent claims are the focus of this
paper.2 The classic linear-asset pricing model in finance is the CAPM developed by Sharpe (1964). The SDF of this model is

yCAPM
t ¼ b0 þ b1rMKT;t ; ð25Þ

where rMKT, t is the excess return on the market portfolio, and b0 and b1 are constant parameters in the model. The CAPM is often
referred to as the unconditional or static CAPM because it is derived in a single-period setting.

Researchers extend the static CAPM to a multiperiod setting by adding state variables and their interactions with the model
factors. For example, according to Jagannathan and Wang (1996), the conditional version of the CAPM implies that an uncondi-
tional expected return depends on the covariance of the market factors and the state variables. Cochrane (1996) adds the

2 In contrast, the nonlinear models are usually derived as equilibrium restrictions of utility functions. Examples of such models include the power-utility model,
the Abel (1990) model, and the Epstein and Zin (1989) model. Here, we focus on the linear models instead of the nonlinear models because SDFs of the nonlinear
models are always positive by specification. Investigations of HJ distances of nonlinear models can be found in Wang and Zhang (2005).
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interaction of instrument variables with the factors to make the CAPM varying over time. In general, the SDF of the time-varying
CAPM is

yCAPM�IV
t ¼ b0 þ b1rMKT;t þ c′0xt−1 þ c′1xt−1rMKT;t ; ð26Þ

where xt−1, referred to as the instrument variable (IV), is the past realization of the vector of the state variables. For convenience,
we denote this model by CAPM*IV. The CAPM and its time-varying extension are not arbitrage free because their SDFs are not re-
stricted to be nonnegative.

In the finance literature, the equilibrium model with a power utility function is often approximated by a linear factor model
with the growth rate of consumption as the factor. This model is studied in Breeden et al. (1989) and Chen et al. (1986). The
SDF of the model is

yLCC
t ¼ b0 þ b1ln Ct=Ct−1ð Þ: ð27Þ

where Ct/Ct−1 is the growth rate of consumption. We refer to this model as LCC. The literature has also extended the LCC into a
time-varying model by adding state variables and their interaction with the growth rate of consumption (see Hodrick and Zhang,
2001; Lettau and Ludvigson, 2002). The SDFs of these types of models are in the form of

þ Št−=t−ð Þ : ð27t−

MKT;þ�

t−MKT ;

þ Š

t−MKT ð Þ : ð27



5. Empirical results

By examining the posterior probability distribution functions (PDF) of the HJ distances, we evaluate the models' performance
on the asset returns and state variables discussed in the previous section. To compare the two HJ distances of each model, we ex-
amine the posterior probability distributions of the absolute and relative differences between the two HJ distances (Section 1). To
compare the performance of the two models, we examine the posterior distributions of the absolute and relative improvements
of one model over another (Section 2).

5.1. Comparison of the two HJ distances

The posterior probability distributions of the two HJ distances are very similar for each of the static models. These posterior
distributions are plotted in Fig. 1. For each model, the two HJ distances, δ and δ+, have almost identical posterior distributions
in the range plotted. The slight difference is that δ+ has a longer tail on the positive side for all three static models.

The summary statistics of these posterior distributions are presented in panel A of Table 2. Taking the Fama–French model as
an example, the posterior means of δ and δ+ are close: 0.637 and 0.671, respectively. Their medians are even closer: 0.583 for δ
and 0.592 for δ+. Their standard deviations are slightly different: 0.218 for δ and 0.309 for δ+. The similarity of the posterior dis-
tributions of the FF's HJ distances is also reflected in the small means and medians of δ+−δ and (δ+−δ)/δ. We observe the same
properties in the statistics for the CAPM and the linear consumption model (LCC). Consistent with the analysis of Guasoni et al.
(2011), the similarity between the two HJ distances implies that one will not be able to generate substantial alpha by incorporat-
ing derivative securities or conditional information if the benchmark of performance is set by these models.

The choice of HJ distances does not affect the statistical inference on the significance of the pricing errors of the static models.
For example, the fifth percentiles of the posterior distribution of δ and δ+ are 0.415 and 0.416, respectively, for the Fama–French
model. These high fifth percentiles indicate the statistical significance of the pricing errors. Thus the statistical significance of the
model's pricing errors is the same regardless of the measure. Therefore, the pricing errors on contingent claims do not alter the
evaluation of the model. This finding also holds for the CAPM and LCC.

In the case of time-varying models, the posterior probability distributions of the two HJ distances are significantly different.
These posterior distributions are plotted in Fig. 2. For each model, the distribution of δ+ spreads further to the right relative to
the distribution of δ. The summary statistics of the posterior distributions are presented in panel B of Table 2. For the CAPM*IV,

Table 1
Summary statistics of data. This table reports the mean and standard deviations (in parenthesis) for the pricing factors, state variables, and base assets. Our sam-
ple period is 1964 to 2008, with 540 monthly observations. The test assets are 25 portfolios sorted by firm size and book-to-market ratios, and the data are
obtained from Kenneth French's website. The pricing factors MKT (excess market return), SMB, and HML are size and book-to-market factors, and the data are
obtained from French's website. The pricing factor consumption growth is consumption growth rate, and the data are obtained from the Bureau of Economic
Analysis. The state variables are TRM (term spread between 10-year and one-year Treasury bonds); DEF (yield spread between Moody's Baa and Aaa corporate
bonds); DIV (dividend yield of the S&P 500 index); HB3 (yield spread between three-month and one-month Treasury bills); and TBL (yield on one-month Trea-
sury bill). The data for DIV is from the Center of Research on Stock Prices, and the data for all other state variables are from the website of the Federal Reserve Bank
of New York.

A. Pricing factors

MKT SMB HML LCC

0.37 0.26 0.42 0.17
(0.19) (0.14) (0.12) (0.01)

B. Annualized state variables

TRM DEF DIV HB3 TBL

0.85 1.02 3.12 0.32 5.52
(0.05) (0.02) (0.05) (0.38) (0.03)

C. The Fama–French portfolios

B/M ratio

Low ii iii iv High

Small 0.12 0.72 0.75 0.96 1.04
(0.35) (0.30) (0.26) (0.24) (0.26)

ii 0.33 0.59 0.84 0.88 0.95
(0.32) (0.26) (0.23) (0.23) (0.25)

Size iii 0.34 0.65 0.69 0.77 0.98
(0.29) (0.24) (0.21) (0.21) (0.23)

iv 0.44 0.44 0.61 0.73 0.74
(0.26) (0.22) (0.22) (0.21) (0.23)

Big 0.31 0.41 0.37 0.45 0.52
(0.21) (0.19) (0.19) (0.18) (0.21)
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the posterior mean of δ+ (0.610) is much larger than that of δ (0.442). The comparison of the posterior means for the LCC*IV is
similar. For FF*IV, the posterior mean of δ+ is 0.541, nearly twice that of the posterior mean of δ, which is only 0.249. The standard
deviation of the posterior distribution of δ+ is much larger than that of δ because the distribution of δ+ spreads out to the positive
side.

For time-varying models, the choice of an HJ measure affects the inference on the significance of the pricing errors. For each
model, the fifth percentile of the posterior distribution of δ is drastically different from that of δ+. Take the FF*IV as an example:
the fifth percentile of the posterior distribution of δ is only 0.133, whereas the fifth percentile of δ+ is nearly three times larger,
indicating that the FF*IV has much higher errors on derivatives of the test assets. Therefore, although the statistical inferences
about the pricing errors of the static models are not affected by the choice of HJ distances, this finding does not hold for the
time-varying models.

The time-varying model has additional parameters, and thus may cause concerns regarding power in statistical inference
(Ferson and Foerster, 1994). The Bayesian analysis has advantages here. Our analysis produces the entire posterior distribution
that shows the uncertainty explicitly. If the addition of parameters increases uncertainty in statistical inference, the posterior dis-
tribution will be more dispersed. This uncertainty will be reflected in the fifth percentile, which corresponds to the hypothesis
test of zero HJ distance at the 5 percent level. For the case of FF*IV, the difference (0.133 versus 0.319) between the fifth percen-
tiles of the HJ distances confirms the significance of FF*IV's pricing errors on contingent claims, after taking the uncertainty of in-
ference into account.

A. The posterior PDF of the HJ distances of CAPM
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Fig. 1. Posterior distributions of HJ distances for static models. This figure presents the estimated posterior distributions of HJ distances for various models. The
solid and dashed lines are the estimated posterior probability density function (PDF) of δ and δ+, respectively.
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The reason why the two HJ distances differ for time-varying models is that their SDFs are likely to be negative. The likelihood
of a negative SDF is measured by its negativity rate as discussed in Section 2. Table 3 presents the summary statistics of the pos-
terior distributions of the negativity rates. The static models have low negativity rates; the posterior means are all below 0.09. In
contrast, for the time-varying model, the posterior means of the negativity rates are all above 0.25. The medians and fifth percen-
tiles of the negativity rates also show that the SDFs of the time-varying models are far more likely to be negative than the SDFs of
the static models. To visualize the SDF of a model and the frequency with which it takes negative values, a particular path of the
SDF is estimated using the posterior mean of the model parameters. The estimated paths for the SDFs of the FF and FF*IV models
are presented in Fig. 3. Clearly, the SDF of the FF*IV model becomes negative more frequently than the SDF of the FF model.

5.2. Comparison of models

An advantage of HJ distances is their convenience for model comparison. To compare a pair of models (A and B) using the first
HJ distance, we report the posterior means of the difference, δA−δB. A large difference indicates that model B is an improvement
on model A. We also examine the posterior probability distribution of 1−δB/δA, which measures the improvement of model B as a
percentage reduction in the pricing error of model A. More important, we can compare a pair of models using the second HJ dis-
tance. Thus, we look at the posterior distributions of δ+

A −δ+
B and 1−δ+

B /δ+
A . The summary statistics of these posterior distribu-

tions are reported in Table 4.
The FF was originally suggested by Fama and French (1993) to explain the pricing errors of the CAPM. It is therefore natural to

compare the FF with the CAPM. Given the well-known failure of the consumption model, we also compare FF with the LCC. We
have observed that the two HJ distances of FF are about the same and that its SDF is rarely negative. Panel A of Table 4 shows that
FF clearly has smaller pricing errors than the CAPM and LCC regardless of the measure of pricing errors. The posterior mean of
δCAPM−δFF is 0.051, and the posterior mean of δ+

CAPM−δ+
FF is 0.048. Corresponding posterior means for the comparison of FF

and LCC are 0.046 and 0.049. However, the fifth percentile of the improvement of FF over the CAPM and LCC is almost zero,
using either HJ distance for the comparison. The posterior distribution of the relative improvement tells the same story:
(1) the comparison is not affected by the choice of the HJ distance; and (2) the confidence of the improvement is not strong.
Therefore, the improvement of the Fama–French model over the static single factor models is quite limited in terms of maximum
pricing errors.

Table 2
The posterior distributions of HJ distances. For each model, this table reports the summary statistics for the estimated posterior distributions of the first HJ dis-
tance (δ), second HJ distance (δ+), their difference (δ+−δ), and their relative difference (δ+/δ−1). For each variable, we report its mean, standard deviation,
median, and fifth percentile.

A. Static models

δ δ+ δ+−δ δþ−δ
δ

CAPM Mean 0.687 0.719 0.035 0.033
Stdev 0.219 0.307 0.125 0.076
Median 0.634 0.643 0.009 0.014
5th-pct 0.466 0.467 0.001 0.002

LCC Mean 0.683 0.720 0.040 0.040
Stdev 0.213 0.307 0.133 0.091
Median 0.632 0.644 0.011 0.018
5th-pct 0.466 0.468 0.001 0.003

FF Mean 0.637 0.671 0.037 0.038
Stdev 0.218 0.309 0.129 0.084
Median 0.583 0.592 0.010 0.017
5th-pct 0.415 0.416 0.001 0.002

B. Time-varying models

δ δ+ δ+−δ δþ−δ
δ

CAPM*IV Mean 0.442 0.610 0.168 0.371
Stdev 0.090 0.269 0.227 0.429
Median 0.434 0.550 0.109 0.259
5th-pct 0.310 0.391 0.028 0.064

LCC*IV Mean 0.445 0.613 0.169 0.371
Stdev 0.093 0.269 0.225 0.420
Median 0.435 0.554 0.109 0.258
5th-pct 0.310 0.394 0.034 0.077

FF*IV Mean 0.249 0.541 0.292 1.289
Stdev 0.079 0.269 0.249 1.127
Median 0.242 0.479 0.233 1.010
5th-pct 0.133 0.319 0.101 0.356
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The comparison of static models with their time-varying extensions is significantly affected by the measure of pricing errors, as
shown in panel B of Table 4. For example, pricing errors on contingent claims make a difference for the comparison between the
FF and the FF*IV. We have 95% confidence that the time-varying extension reduces the error of the FF by 13.3% based on the first
HJ distance. Based on the second HJ distance, however, the measure with 95-percent confidence reduces by only 5.8%. The inference
about the magnitude of the improvement clearly depends on the measure of pricing errors. The posterior mean of δFF−δFF∗ IV is 0.388,
in contrast to the posterior mean of δ+

FF−δ+
FF ∗ IV estimated at 0.13. The posterior mean of 1−δFF ∗ IV/δFF is 0.59, whereas the mean

of 1−δ+
FF ∗ IV/δ+

ectFF is only 0.196. Therefore, we are very confident that the switch from FF to FF*IV reduces the pricing error substan-
tially if we measure pricing errors by the first HJ distance, but the error reduction is much smaller if we use the second HJ distance.

The measures of pricing errors affect the comparisons of the CAPM and LCC with their time-varying extensions (CAPM*IV and
LCC*IV) similarly. The posterior mean of δCAPM−δCAPM ∗ IV is 0.246, but the mean of δ+

CAPM−δ+
CAPM ∗ IV is 0.109, less than half the former.

The median and fifth percentile of δCAPM−δCAPM ∗ IV are also less than half the median and fifth percentile of δ+
CAPM−δ+

CAPM∗ IV. The





first HJ distance. In contrast, the reduction with the same confidence is only 2.6% if the pricing errors are measured by the second
distance. These results demonstrate the importance of pricing errors on contingent claims.

6. Conclusion

In the literature, it has been unclear whether the second HJ distance is empirically important. In Hansen and Jagannathan's
(1997) estimates, the second HJ distance is not very different from the first HJ distance because both focus on consumption-
based nonlinear models that are arbitrage free by definition. However, Bansal and Viswanathan (1993) argue that the
arbitrage-free requirement might be important when the focus is nonlinear APT models. The analysis presented in this paper con-
ducts a formal statistical inference of model comparisons using both HJ distances and demonstrates the importance of the second
HJ distance in the context of linear time-varying models.

A good asset-pricing model should have small pricing errors not only in test portfolios but also in the contingent claims of the
portfolios. The requirement of zero pricing errors on contingent claims does not allow asset-pricing models to admit arbitrage op-
portunities and allows only positive stochastic discount factors. In this discussion, we emphasize the pricing errors on contingent
claims, which have been ignored in a large body of the literature of empirical evaluation of asset-pricing models.

To show the importance of pricing errors on contingent claims, we focus on the comparison of static models to their time-varying
extensions. According to our results, although the time-varying models are successful in explaining returns on the test assets, they are
not arbitrage free and can thus have pricing errors on contingent claims of the test assets. In contrast, the static linear models are not
successful in that regard, but their SDFs are mostly positive. Using the first HJ distance, which ignores pricing errors on contingent
claims, a linear time-varying model can have substantially smaller pricing errors than a static single model. However, when using
the second HJ distance, which does not ignore pricing errors on contingent claims, the linear time-varying model may not be a sub-
stantial improvement on the static single-factor model.

Table 4
Model comparison. For each pair of models, A and B, summary statistics are presented for the posterior distributions of reductions of pricing errors of model B
over model A. The reduction of pricing errors is measured by δB−δA and 1−δ+

B /δ+
A .

A. Comparing single- and multiple-factor models

Improvement Mean Stdev Median 5th-pct

δCAPM−δFF 0.051 0.037 0.043 0.006
δ+

CAPM−δ+
FF 0.048 0.034 0.042 0.006

δLCC−δFF 0.046 0.042 0.042 −0.007
δ+

LCC−δ+
FF 0.049 0.037 0.043 0.003

1−δFF/δCAPM 0.078 0.055 0.066 0.009
1−δ+

FF/δ+
CAPM 0.074 0.054 0.063 0.008

1−δFF/δLCC 0.072 0.063 0.064 −0.010
1−δ+

FF/δ+
LCC 0.075 0.058 0.065 0.004

B. Comparing static and time-varying models

Improvement Mean Stdev Median 5th-pct

δCAPM−δCAPM ∗ IV 0.246 0.182 0.198 0.071
δ+

CAPM−δ+
CAPM ∗ IV 0.109 0.069 0.093 0.035

δLCC−δLCC ∗ IV 0.238 0.174 0.193 0.070
δ+

LCC−δ+
LCC ∗ IV 0.106 0.069 0.091 0.030

δFF−δFF ∗ IV 0.388 0.201 0.342 0.176
δ+

FF−δ+
FF ∗ IV 0.130 0.070 0.113 0.054

1−δCAPM ∗ IV/δCAPM 0.330 0.132 0.320 0.133
1−δ+

CAPM ∗ IV/δ+
CAPM 0.150 0.066 0.142 0.058

1−δLCC ∗ IV/δLCC 0.324 0.131 0.311 0.130
1−δ+

LCC ∗ IV/δ+
LCC 0.146 0.067 0.137 0.051

1−δFF ∗ IV/δFF 0.590 0.129 0.596 0.370
1−δ+

FF ∗ IV/δ+
FF 0.196 0.070 0.188 0.096

C. Comparing single- and multiple-factor time-varying models

Improvement Mean StDev Median 5th-pct

δCAPM ∗ IV−δFF ∗ IV 0.193 0.074 0.185 0.086
δ+

CAPM ∗ IV−δ+
FF ∗ IV 0.069 0.037 0.063 0.022

δLCC ∗ IV−δFF ∗ IV 0.196 0.084 0.191 0.069
δ+

LCC ∗ IV−δ+
FF ∗ IV 0.073 0.041 0.068 0.017

1−δFF ∗ IV/δCAPM ∗ IV 0.436 0.137 0.432 0.213
1−δ+

FF ∗ IV/δ+
CAPM ∗ IV 0.124 0.069 0.114 0.031

1−δFF ∗ IV/δLCC ∗ IV 0.435 0.154 0.439 0.179
1−δ+

FF ∗ IV/δ+
LCC ∗ IV 0.128 0.075 0.120 0.026
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Therefore, although a linear time-varying model has small pricing errors measured by the first HJ distance, it is still possible to
have large pricing errors on portfolios that are constructed with sophisticated rules. In searching for robust asset-pricing models,
we should choose models that have small second HJ distances.

The issue investigated in this study is part of a larger issue of overfitting data with extended models that contains many variables
and parameters. The special aspect of this problem focused on here is that the SDF, which has many unknown parameters and de-
pends on conditional information, is likely to be negative because of the need to fit the data. This special overfitting problem has im-
portant economic implications because it leads to arbitrage and pricing errors on contingent claims of the test assets. The second HJ
distance indicates the magnitude of the problem. Since the second HJ distance addresses the overfitting problem, it is a useful tool in
search of robust asset-pricing models.
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