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replacing the two-step selection strategy with JMA method, we im-
prove the post-treatment prediction of Hsiao et al. (2012) in terms
of mean squared prediction errors (PMSE).

The rest of the paper is organized as follows. Section 2 briefly
reviews both Hsiao et al. (2012) method and the JMA method.
Section 3 reports simulation results to examine the finite sample
performance of our proposed method. Section 4 concludes the
paper.

2. Theoretical model

In this section we briefly discuss the estimation method in Hsiao
et al. (2012). Suppose there is no treatment to all units up to T1.
At time T1 + 1, there is only one unit that receives a treatment.
Let yt be the treatment unit’s outcome at time t . Correspondingly,
let xt = (x1t , . . . , xNt)

′ be the outcomes of N control units at time
t .1 Hsiao et al. (2012) consider the case that both treatment and
control units’ outcomes are generated by a factor model (e.g., Bai
and Ng, 2002) in the absence of treatment for t = 1, . . . , T1:

ỹt = a + Bft + ut , (1)

where ỹt = (yt , x1t , . . . , xNt)
′, a = (a1, . . . , aN+1)

′, ft is a K × 1
vector of common factors (they may be unobservable) that affect
outcomes, B is a (N + 1) × K matrix of factor loading, ut =
u1t , . . . , u(N+1)t

′ is a vector of idiosyncratic error. Let y1
t and y0

t
denote the outcomes of the treated unit with and without the
policy intervention, respectively. Given that there is a treatment at
time T1 + 1, we are interested in estimating the average treatment
effects ∆1 = E(y1

t − y0
t ). The difficulty is that we cannot observe

y0
t for t ≥ T1 + 1. Hsiao et al. (2012) suggest using control units’

outcomes xt to estimate y0
t when t ≥ T1 + 1. This can be done by

replacing ft by xt in the treatment unit’s equation yt = a1+b′

1ft +ut
to obtain

yt = γ0 + x′

tγ + vt , (2)

for t = 1, . . . , T1, where γ0 is intercept, γ = (γ1, γ2, . . . , γN)′, vt
satisfies that E(vt) = 0, E(vt xt) = 0 and var(vt) is finite. Let γ̂0
and γ̂ denote the least square estimators of γ0 and γ based on (2),
then we estimate the counterfactual outcome of y0

t by

ŷ0
t = γ̂0 + x′

t γ̂ , (3)

for t = T1 + 1, . . . , T . Let T2 = T − T1, then the average treatment
effect is estimated by

∆̂1 =
1
T2

T
t=T1+1


yt − ŷ0

t


. (4)

In application, N may not be small relative to T1. Thus, it is
advantageous to use only a subset of the N control units rather than
all of them to predict the counterfactuals. For N control units, there
are 2N different models, and the most appropriate model should
balance the within-sample fit with the out-sample prediction
error. Hsiao et al. (2012) propose a two-step model selection
procedure to find out which model is the most appropriate.
Specifically, in the first step, they use R2 to select the best predictor
for y0

t using k control units out of N control units, denoted
by M(k)∗, for k = 1, . . . , N . Then, in the second step, from
M(1)∗, M(2)∗, . . . , M(N)∗, they pin down one best model from
the N candidate models in terms of model selection criterion
such as Akaike information criterion ( Tf 4.799 0 Td [(/)]TJ/F
174 6.6948 Tf 3.568 3.472 Td [(�)]TJ/Fen
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Table 1
Comparison of PMSE between model average method (MA) and HCW method (AICC and AIC): 1 factor.

σ 2
= 1 σ 2

= 0.5 σ 2
= 0.1

MA AICC AIC MA AICC AIC MA AICC AIC

T1 = 25, T = 35
Avg. # � 3.56 10.92 � 3.63 11.14 � 3.66 10.95
PMSE 1.8404 2.0967 6.0158 0.9199 1.0540 3.1426 0.1838 0.2101 0.7461
T1 = 40, T = 50
Avg. # � 3.71 5.91 � 3.75 5.94 � 3.76 5.97
PMSE 1.3841 1.7310 1.8935 0.6919 0.8635 0.9643 0.1383 0.1728 0.1915
T1 = 60, T = 70
Avg. # � 4.14 5.60 � 4.20 5.37 � 4.19 5.39
PMSE 1.2553 1.4180 1.4722 0.6282 0.7258 0.7473 0.1258 0.1453 0.1496
Table 2
Comparison of PMSE between model average method (MA) and HCW method (AICC and AIC): 2 factors.

σ 2
= 1 σ 2

= 0.5 σ 2
= 0.1

MA AICC AIC MA AICC AIC MA AICC AIC

T1 = 25, T = 35
Avg. # � 4.16 11.09 � 4.11 10.97 � 4.24 11.15
PMSE 2.0749 2.4358 6.2314 1.0626 1.1658 2.7615 0.2195 0.2372 0.6337
T1 = 40, T = 50
Avg. # � 3.94 6.25 � 4.05 6.28 � 3.98 6.35
PMSE 1.6196 1.8450 1.9634 0.8160 0.9380 1.0153 0.1639 0.1865 0.1970
T1 = 60, T = 70
Avg. # � 4.35 5.58 � 4.50 5.78 � 4.54 5.83
PMSE 1.3829 1.6194 1.6502 0.6962 0.7904 0.7986 0.1400 0.1578 0.1605
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where ST1 =
1
T1

ẽ′ ẽ is a N × N matrix. The Jackknife weight
ŵ is the value that minimizes (6) under the restrictions that each
weight is between 0 and 1 and their summation equals to 1. Since
Eq. (6) is quadratic in w, we could get ŵ by applying the standard
quadratic programming technique which requires short comput-
ing time. With the selected weight ŵ above, the Jackknife model
average (JMA) estimator of µ could be written as µ̂(ŵ) = µ̂ŵ, and
our model averaging estimation of the treatment effect defined in
(4) could be calculated through ŷ0

t ̸′ ,8(r11ψTfψ8(093ψ0ψTdψ♭↼60↽♯
TJ)F195ψϒ(6513ψTfψϒ(6ϒ9ψ0ψTdψ♭↼,8(r11ψTfψ8(093ψ0ψTdψ♭↼60↽♯TJ)F195ψ
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Table 3
Comparison of PMSE between model average method (MA) and HCW method (AICC and AIC): 3 factors.

� 2 D 1 � 2 D 0:5 � 2 D 0:1
MA AICC AIC MA AICC AIC MA AICC AIC

T1 D 25; T D 35
Avg. # � 4.40 11.18 � 4.54 11.70 � 4.74 11.72
PMSE 2.4758 2.8493 6.5231 1.2956 1.4640 3.2716 0.2732 0.3051 0.7024

T1 D 40; T D 50
Avg. # � 4.90 7.10 � 5.08 7.22 � 5.04 7.24
PMSE 1.7900 1.9705 2.1136 0.9051 0.9716 1.0804 0.1829 0.1987 0.2095

T1 D 60; T D 70
Avg. # � 5.12 6.34 � 5.18 6.36 � 5.24 6.42
PMSE 1.5205 1.6437 1.6842 0.7659 0.8302 0.8516 0.1542 0.1677 0.1685
method with Hsiao et al. (2012) by comparing the post-treatment
mean squared prediction errors (PMSE), which is defined as

PMSED
1

T � T1

TX

t DT1C1

.y0
t � Oy0

t /2;

where Oy0
t is the estimated counterfactual outcome by using the

AIC method, or the AICC method, or our proposed Jackknife model
average method.

We repeat each of the structures 1000 times. The results are
displayed in Tables 1�3. The Avg. # is the average number of control
units selected by the AIC or the AICC methods. Simulation results
show that our method has smaller PMSE in all cases, indicating
improved predicting performance by replacing the two-step model
selection strategy with the JMA method.

4. Conclusion

In this paper we suggest to replace the two-step model selection
strategy in Hsiao et al. (2012) with the Jackknife model average
(JMA) method to estimate average treatment effect of a program
or a policy. By applying the JMA, we show that the post-treatment
predicting performance improves in terms of prediction mean
squared error.
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